scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Population, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: The characterization of single‐cell ERK dynamics provides a quantitative foundation for understanding the regulatory structure of this signaling cascade and revealed that negative feedback from phosphorylated ERK to the cascade input was necessary to match the robustness of the oscillation characteristics observed over a broad range of ligand concentrations.
Abstract: Although the ERK pathway has a central role in the response of cells to growth factors, its regulatory structure and dynamics are incompletely understood. To investigate ERK activation in real time, we expressed an ERK–GFP fusion protein in human mammary epithelial cells. On EGF stimulation, we observed sustained oscillations of the ERK–GFP fusion protein between the nucleus and cytoplasm with a periodicity of ∼15 min. The oscillations were persistent (>45 cycles), independent of cell cycle phase, and were highly dependent on cell density, essentially disappearing at confluency. Oscillations occurred even at ligand doses that elicited very low levels of ERK phosphorylation, and could be detected biochemically in both transfected and nontransfected cells. Mathematical modeling revealed that negative feedback from phosphorylated ERK to the cascade input was necessary to match the robustness of the oscillation characteristics observed over a broad range of ligand concentrations. Our characterization of single-cell ERK dynamics provides a quantitative foundation for understanding the regulatory structure of this signaling cascade.

240 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare and connect strategies to enable different multivalent and monovalent metal-ion battery anodes, including metal anodes and intercalation-based, alloy-based and conversion-reaction-based anodes.
Abstract: The inability of current battery technologies to keep up with the performance requirements of industry is pushing forward developments in electrochemistry. Specifically, the battery’s negative electrode, the anode, presents many unique chemical, physical and engineering challenges. Lithium-based battery technologies have dominated the past decade, but concerns about the limited supply of lithium in the Earth’s crust have led researchers to look towards alternative metal-ion technologies. Various alkali metals (such as sodium and potassium) and alkali earth metals (such as magnesium and calcium) have attracted significant research interest. In this Review, we analyse these technologies in a coherent manner, addressing the problems of each type of anode, rather than those of specific types of metal-ion batteries. Covering direct metal plating and stripping, intercalation-based, alloy-based and conversion-reaction-based anode technologies, this analysis will offer the reader a comprehensive understanding of the behaviour of different metal-ion anodes and of what can be learned by transferring knowledge between these different systems. Increasing demand for energy-storage systems will inevitably stress the Earth’s lithium supply; thus, the research focus is shifting towards other alkali and alkali earth metals. This Review compares and connects strategies to enable different multivalent and monovalent metal-ion battery anodes, including metal anodes and intercalation-based, alloy-based and conversion-reaction-based anodes.

240 citations

Journal ArticleDOI
TL;DR: The most comprehensive measurement of biomass burning emissions to date and it should enable improved representation of smoke composition in atmospheric models is presented in this article, where the results support a recent estimate of global NMOC emissions from biomass burning that is much higher than widely used estimates and they provide important insights into the nature of smoke.
Abstract: . An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for "smoldering compounds" emitted from the semiarid shrubland fuels should likely be increased by a factor of ~2.7 to better represent field fires. Based on the lab/field comparison, we present emission factors for 357 pyrogenic species (including unidentified species) for 4 broad fuel types: pine understory, semiarid shrublands, coniferous canopy, and organic soil. To our knowledge this is the most comprehensive measurement of biomass burning emissions to date and it should enable improved representation of smoke composition in atmospheric models. The results support a recent estimate of global NMOC emissions from biomass burning that is much higher than widely used estimates and they provide important insights into the nature of smoke. 31–72% of the mass of gas-phase NMOC species was attributed to species that we could not identify. These unidentified species are not represented in most models, but some provision should be made for the fact that they will react in the atmosphere. In addition, the total mass of gas-phase NMOC divided by the mass of co-emitted PM2.5 averaged about three (range ~2.0–8.7). About 35–64% of the NMOC were likely semivolatile or of intermediate volatility. Thus, the gas-phase NMOC represent a large reservoir of potential precursors for secondary formation of ozone and organic aerosol. For the single lab fire in organic soil about 28% of the emitted carbon was present as gas-phase NMOC and ~72% of the mass of these NMOC was unidentified, highlighting the need to learn more about the emissions from smoldering organic soils. The mass ratio of total NMOC to "NOx as NO" ranged from 11 to 267, indicating that NOx-limited O3 production would be common in evolving biomass burning plumes. The fuel consumption per unit area was 7.0 ± 2.3 Mg ha−1 and 7.7 ± 3.7 Mg ha−1 for pine-understory and semiarid shrubland prescribed fires, respectively.

240 citations

Proceedings ArticleDOI
25 Mar 2006
TL;DR: The effects of large high-resolution displays on human performance and other aspects is important as the authors look toward future advances in display technology and how it is applied in different situations.
Abstract: Continued advances in display hardware, computing power, networking, and rendering algorithms have all converged to dramatically improve large high-resolution display capabilities. We present a survey on prior research with large high-resolution displays. In the hardware configurations section we examine systems including multi-monitor workstations, reconfigurable projector arrays, and others. Rendering and the data pipeline are addressed with an overview of current technologies. We discuss many applications for large high-resolution displays such as automotive design, scientific visualization, control centers, and others. Quantifying the effects of large high-resolution displays on human performance and other aspects is important as we look toward future advances in display technology and how it is applied in different situations. Interacting with these displays brings a different set of challenges for HCI professionals, so an overview of some of this work is provided. Finally, we present our view of the top ten greatest challenges in large highresolution displays.

240 citations

Journal ArticleDOI
TL;DR: It is found that never-before-identified low-volatility organic species, which are highly functionalized, explain a major fraction of the total particle nitrate mass measured by the traditional aerosol mass spectrometer, shows that these organic nitrates are likely derived from oxidation of biogenic hydrocarbons and persist in the particle phase for only a few hours.
Abstract: Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.

240 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,793
20201,795
20191,598
20181,619