scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Population, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: The authors analyze the cell processor's communication network, using a series of benchmarks involving various DMA traffic patterns and synchronization protocols to illuminate this important point in multicore processor design.
Abstract: Multicore designs promise various power-performance and area-performance benefits. But inadequate design of the on-chip communication network can deprive applications of these benefits. To illuminate this important point in multicore processor design, the authors analyze the cell processor's communication network, using a series of benchmarks involving various DMA traffic patterns and synchronization protocols

391 citations

Journal ArticleDOI
TL;DR: In this paper, Lysimetry and tracer tests are used to evaluate recharge at arid sites, particularly in siting waste disposal facilities, where reliable recharge estimates are needed.
Abstract: Arid-site recharge, while generally low, can be highly variable. Recharge under similar climate and soil conditions but with different plant cover and topography can vary from zero to more than the annual precipitation. Simple estimates of recharge based on fixed fractions of annual precipitation are misleading because they do not reflect the plant and soil factors controlling recharge. Detailed water balance models, successful for irrigated agriculture, fail to predict evapotranspiration accurately under conditions where plants suffer seasonal water stress and cover is sparse. Recharge, when estimated as a residual in water balance models, may be in error by as much as an order of magnitude. Similar errors can occur when soil water flow models are used with measured or estimated soil hydraulic conductivities and tension gradients. Lysimetry and tracer tests offer the best hope for evaluating recharge at arid sites, particularly in siting waste disposal facilities, where reliable recharge estimates are needed. Quantification of drainage using lysimetry over several years under a given set of soil, plant, and climate conditions for a specific site can provide a basis for calibrating models for recharge prediction. Tracer tests using such long-lived tracers as 36Cl or perhaps stable isotopes (180, deuterium) can provide qualitative estimates of recent recharge at a given site.

391 citations

Journal ArticleDOI
TL;DR: Recent developments in nanobiocatalysis are described and their potential applications in various fields, such as trypsin digestion in proteomic analysis, antifouling, and biofuel cells are described.

391 citations

Journal ArticleDOI
TL;DR: Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M-N-C catalysts/cathodes degradation.
Abstract: In recent years, significant progress has been achieved in the development of platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) catalysts for proton exchange membrane (PEM) fuel cells. At the same time the limited durability of these catalysts remains a great challenge that needs to be addressed. This mini-review summarizes the recent progress in understanding the main causes of instability of PGM-free ORR catalysts in acidic environments, focusing on transition metal/nitrogen codoped systems (M-N-C catalysts, M: Fe, Co, Mn), particularly MNx moiety active sites. Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M-N-C catalysts/cathodes degradation.

390 citations

Journal ArticleDOI
TL;DR: In this article, a highly accurate aggregated model is developed for a population of air conditioning loads, which effectively includes statistical information of the load population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response.
Abstract: Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the load population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategy is validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

390 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,793
20201,795
20191,598
20181,619