scispace - formally typeset
Search or ask a question
Institution

Panasonic

CompanyKadoma, Ôsaka, Japan
About: Panasonic is a company organization based out in Kadoma, Ôsaka, Japan. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 49129 authors who have published 71118 publications receiving 942756 citations. The organization is also known as: Panasonikku Kabushiki-gaisha & Panasonic.


Papers
More filters
Patent
Kunihiro Ukai1, Kiyoshi Taguchi1, Hidenobu Wakita1, Seiji Fujihara1, Yukimune Kani1 
24 Dec 2010
TL;DR: In this article, a reformer temperature sensor detects the temperature at the start of a stop operation of a hydrogen generator and compares the detected temperature with first to fourth reference temperatures pre-stored in a storage portion, and determines which of the following conditions is the temperature condition of the hydrogen generator at the stop.
Abstract: In a hydrogen generator according to the invention, a reformer temperature sensor detects the temperature of a reformer at a start of a stop operation of a hydrogen generator. In a controller, a processing and controlling portion compares the detected temperature with first to fourth reference temperatures pre-stored in a storage portion, and determines which of the following conditions is the temperature condition of the hydrogen generator at the stop; a first condition in which water condensation occurs, a second condition in which water condensation and carbon deposition are avoidable, a third condition in which carbon deposition occurs, a fourth condition in which disproportionation reaction occurs, and a fifth condition in which oxidization of catalyst occurs. According to the determination result, an appropriate setting is selected among first to fifth replacement settings pre-stored in the controller corresponding to the first to fifth conditions, and an internal gas replacement operation is performed according to the selected setting.

118 citations

Patent
Yuji Uesugi1, Makino Masashi1, Yukio Nishikawa1, Kunio Oshima1, Akihito Shinohara1 
21 Dec 1995
TL;DR: In this paper, a flat field lens is used to converge a laser beam reflected on a pair of turning mirrors on a specified plane, and an X-Y stage carries and moves thereon an object to be processed to which the laser beam is applied.
Abstract: A laser processing method is to be executed by a pair of turning mirrors of which axes of rotation are arranged in mutually twisted positions, a flat field lens for converging a laser beam reflected on the pair of turning mirrors on a specified plane, and an X-Y stage which carries and moves thereon an object to be processed to which the laser beam is applied, the object having a plurality of rectangular planar areas of the same shape as each other in a matrix form and adjoining the rectangular planar areas while not overlapping the rectangular planer area nor leaving any space therebetween The method includes a first step of executing application of the laser beam of which a laser applying position is determined by the pair of turning mirrors and the flat field lens to one of the rectangular planar areas of the object, a second step of moving an X-axis stage or a Y-axis stage of the X-Y stage after the first step is completed, a third step of executing application of the laser beam to one of the rectangular planar areas which is adjacent to the rectangular planar area to which the latest application of the laser beam is performed, and a fourth step of executing the second and third steps alternately to process the plurality of rectangular planar areas of the object

118 citations

Patent
04 Mar 2002
TL;DR: In this paper, the consumed power of a MOS type sensor including a floating diffusion (FD) amplifier in each pixel is reduced by connecting different drain lines row by row, so as to selectively supply a power pulse to each row.
Abstract: The consumed power of a MOS type sensor including a floating diffusion (FD) amplifier in each pixel is reduced. For this purpose, drain regions (regions for supplying a pulse voltage to FD portions through reset transistors) of unit pixels are connected to different drain lines row by row, so as to selectively supply a power pulse to each row. The power pulse is set to a HIGH level potential at least during a period when signal charge stored in the FD portion is reset and a period when the signal charge stored in the FD portion is detected.

118 citations

Patent
21 Dec 2001
TL;DR: In this article, a method for determining the concentration of a substrate in a sample solution using an electrode system comprising a working electrode and a counter electrode, both being formed on an electrically insulating base plate, and a reaction layer which contains at least an oxidoreductase and an electron mediator and is formed on the electrode system to electrochemically measure a reduced amount of the electron mediators resulting from enzyme reaction in the reaction layer, wherein a third electrode is formed as an interfering substance detecting electrode somewhere apart from the reactive layer to detect supply of the sample solution on the
Abstract: A method for determining the concentration of a substrate in a sample solution using an electrode system comprising a working electrode and a counter electrode, both being formed on an electrically insulating base plate, and a reaction layer which contains at least an oxidoreductase and an electron mediator and is formed on the electrode system to electrochemically measure a reduced amount of the electron mediator resulting from enzyme reaction in the reaction layer, wherein a third electrode is formed as an interfering substance detecting electrode somewhere apart from the reaction layer to detect supply of the sample solution on the basis of an electrical change between the counter electrode and the third electrode. A current flowing between the counter electrode and the third electrode is measured which is taken as a positive error. Subsequently, voltage application between the counter electrode and the third electrode is released and a voltage for oxidizing the reduced form electron mediator is applied between the working electrode and the counter electrode to measure a current flowing between the two electrodes. Influences of any interfering substance such as easy-to-oxidize substance are reduced, whereby a highly reliable value of substrate determination can be obtained.

117 citations

Patent
Masayuki Endo1, Masaru Sasago1
14 Aug 2003
TL;DR: In this paper, pattern exposure is carried out by irradiating the resist film with exposing light while supplying, between a projection lens and resist film, a solution of water (having a refractive index of 1.44) that includes an antifoaming agent and is circulated and temporarily stored in a solution storage.
Abstract: After forming a resist film made from a chemically amplified resist material, pattern exposure is carried out by irradiating the resist film with exposing light while supplying, between a projection lens and the resist film, a solution of water (having a refractive index of 1.44) that includes an antifoaming agent and is circulated and temporarily stored in a solution storage. After the pattern exposure, the resist film is subjected to post-exposure bake, and the resultant resist film is developed with an alkaline developer. Thus, a resist pattern made of an unexposed portion of the resist film can be formed in a good shape.

117 citations


Authors

Showing all 49132 results

NameH-indexPapersCitations
Yang Yang1712644153049
Hideo Hosono1281549100279
Shuicheng Yan12381066192
Akira Yamamoto117199974961
Adam Heller11138141063
Tadashi Kokubo10455749042
Masatoshi Kudo100132453482
Héctor D. Abruña9858538995
Duong Nguyen9867447332
Henning Sirringhaus9646750846
Chao Yang Wang9530726857
George G. Malliaras9438228533
Masaki Takata9059428478
Darrell G. Schlom8864141470
Thomas A. Moore8743730666
Network Information
Related Institutions (5)
Sony Broadcast & Professional Research Laboratories
63.8K papers, 865.6K citations

92% related

Toshiba
83.6K papers, 1M citations

92% related

Hitachi
101.4K papers, 1.4M citations

91% related

Tokyo Institute of Technology
101.6K papers, 2.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
2021325
2020933
20191,527
20181,588