Institution
Paris Dauphine University
Education•Paris, France•
About: Paris Dauphine University is a(n) education organization based out in Paris, France. It is known for research contribution in the topic(s): Population & Approximation algorithm. The organization has 1766 authors who have published 6909 publication(s) receiving 162747 citation(s). The organization is also known as: Paris Dauphine & Dauphine.
Topics: Population, Approximation algorithm, Parameterized complexity, Bounded function, Time complexity
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorem, and continuous dependence may now be proved by very efficient and striking arguments as discussed by the authors.
Abstract: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions
4,888 citations
Book•
[...]
TL;DR: In this article, the authors consider non-convex variational problems with a priori estimate in convex programming and show that they can be solved by the minimax theorem.
Abstract: Preface to the classics edition Preface Part I. Fundamentals of Convex Analysis. I. Convex functions 2. Minimization of convex functions and variational inequalities 3. Duality in convex optimization Part II. Duality and Convex Variational Problems. 4. Applications of duality to the calculus of variations (I) 5. Applications of duality to the calculus of variations (II) 6. Duality by the minimax theorem 7. Other applications of duality Part III. Relaxation and Non-Convex Variational Problems. 8. Existence of solutions for variational problems 9. Relaxation of non-convex variational problems (I) 10. Relaxation of non-convex variational problems (II) Appendix I. An a priori estimate in non-convex programming Appendix II. Non-convex optimization problems depending on a parameter Comments Bibliography Index.
4,272 citations
[...]
TL;DR: In this article, a constrained minimization method was proposed for the case of dimension N = 1 (Necessary and sufficient conditions) for the zero mass case, where N is the number of dimensions in the dimension N.
Abstract: 1. The Main Result; Examples . . . . . . . . . . . . . . . . . . . . . . . 316 2. Necessary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 319 3. The Constrained Minimization Method . . . . . . . . . . . . . . . . . . 323 4. Further Properties of the Solution . . . . . . . . . . . . . . . . . . . . 328 5. The \"Zero Mass\" Case . . . . . . . . . . . . . . . . . . . . . . . . . 332 6. The Case of Dimension N = 1 (Necessary and Sufficient Conditions) . . . . . 335 Appendix. Technical Results . . . . . . . . . . . . . . . . . . . . . . . . 338
2,097 citations
[...]
TL;DR: In this paper, the authors present three examples of the mean-field approach to modelling in economics and finance (or other related subjects) and show that these nonlinear problems are essentially well-posed problems with unique solutions.
Abstract: We survey here some recent studies concerning what we call mean-field models by analogy with Statistical Mechanics and Physics. More precisely, we present three examples of our mean-field approach to modelling in Economics and Finance (or other related subjects...). Roughly speaking, we are concerned with situations that involve a very large number of “rational players” with a limited information (or visibility) on the “game”. Each player chooses his optimal strategy in view of the global (or macroscopic) informations that are available to him and that result from the actions of all players. In the three examples we mention here, we derive a mean-field problem which consists in nonlinear differential equations. These equations are of a new type and our main goal here is to study them and establish their links with various fields of Analysis. We show in particular that these nonlinear problems are essentially well-posed problems i.e., have unique solutions. In addition, we give various limiting cases, examples and possible extensions. And we mention many open problems.
1,836 citations
Authors
Showing all 1766 results
Name | H-index | Papers | Citations |
---|---|---|---|
Pierre-Louis Lions | 98 | 283 | 57043 |
Laurent D. Cohen | 94 | 417 | 42709 |
Chris Bowler | 87 | 288 | 35399 |
Christian P. Robert | 75 | 535 | 36864 |
Albert Cohen | 71 | 368 | 19874 |
Gabriel Peyré | 65 | 303 | 16403 |
Kerrie Mengersen | 65 | 737 | 20058 |
Nader Masmoudi | 62 | 245 | 10507 |
Roland Glowinski | 61 | 393 | 20599 |
Jean-Michel Morel | 59 | 302 | 29134 |
Nizar Touzi | 57 | 224 | 11018 |
Jérôme Lang | 57 | 277 | 11332 |
William L. Megginson | 55 | 169 | 18087 |
Alain Bensoussan | 55 | 417 | 22704 |
Yves Meyer | 53 | 128 | 14604 |