scispace - formally typeset
Search or ask a question
Institution

Paris Descartes University

GovernmentParis, France
About: Paris Descartes University is a government organization based out in Paris, France. It is known for research contribution in the topics: Population & Transplantation. The organization has 20987 authors who have published 37456 publications receiving 1206222 citations. The organization is also known as: Université Paris V-Descartes & Université de Paris V.


Papers
More filters
Journal ArticleDOI
TL;DR: The disruption of mitotic catastrophe precipitates tumorigenesis and cancer progression, and its induction constitutes a therapeutic endpoint.
Abstract: The improper distribution of chromosomes during mitosis compromises cellular functions and can reduce cellular fitness or contribute to malignant transformation. As a countermeasure, higher eukaryotes have developed strategies for eliminating mitosis-incompetent cells, one of which is mitotic catastrophe. Mitotic catastrophe is driven by a complex and poorly understood signalling cascade but, from a functional perspective, it can be defined as an oncosuppressive mechanism that precedes (and is distinct from) apoptosis, necrosis or senescence. Accordingly, the disruption of mitotic catastrophe precipitates tumorigenesis and cancer progression, and its induction constitutes a therapeutic endpoint.

696 citations

Journal ArticleDOI
TL;DR: The aim of this review is to recapitulate the clinical understanding of CSCR, with an emphasis on the most recent findings on epidemiology, risk factors, clinical and imaging diagnosis, and treatments options, and the novel mineralocorticoid pathway hypothesis.

690 citations

Journal ArticleDOI
27 Aug 2009-Nature
TL;DR: It is shown that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response, and also immunologically silences airborne moulds.
Abstract: The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10(9) per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (DeltarodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.

686 citations

Journal ArticleDOI
TL;DR: Depletion of PERK, caspase‐8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.
Abstract: Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2α, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2α (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.

682 citations

Journal ArticleDOI
TL;DR: It is shown that mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutières syndrome (AGS), and it is speculated that ADar1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.
Abstract: Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutieres syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.

679 citations


Authors

Showing all 21023 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Cyrus Cooper2041869206782
Jean-Laurent Casanova14484276173
Alain Fischer14377081680
Maxime Dougados134105469979
Carlos López-Otín12649483933
Giuseppe Viale12374072799
Thierry Poynard11966864548
Lorenzo Galluzzi11847771436
Shahrokh F. Shariat118163758900
Richard E. Tremblay11668545844
Olivier Hermine111102643779
Yehezkel Ben-Ari11045944293
Loïc Guillevin10880051085
Gérard Socié10792044186
Network Information
Related Institutions (5)
French Institute of Health and Medical Research
174.2K papers, 8.3M citations

96% related

University of Paris
174.1K papers, 5M citations

92% related

Erasmus University Rotterdam
91.2K papers, 4.5M citations

91% related

Emory University
122.4K papers, 6M citations

90% related

Université de Montréal
100.4K papers, 4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202279
20211,082
20201,994
20193,298
20183,323