scispace - formally typeset
Search or ask a question
Institution

Paris Descartes University

GovernmentParis, France
About: Paris Descartes University is a government organization based out in Paris, France. It is known for research contribution in the topics: Population & Transplantation. The organization has 20987 authors who have published 37456 publications receiving 1206222 citations. The organization is also known as: Université Paris V-Descartes & Université de Paris V.


Papers
More filters
Journal ArticleDOI
TL;DR: With a median follow-up of more than 6 years after treatment discontinuation, the STIM1 study demonstrates that IM can safely be discontinued in patients with a sustained deep molecular response with no late MR.
Abstract: PurposeImatinib (IM) can safely be discontinued in patients with chronic myeloid leukemia (CML) who have had undetectable minimal residual disease (UMRD) for at least 2 years. We report the final results of the Stop Imatinib (STIM1) study with a long follow-up.Patients and MethodsIM was prospectively discontinued in 100 patients with CML with UMRD sustained for at least 2 years. Molecular recurrence (MR) was defined as positivity of BCR-ABL transcript in a quantitative reverse transcriptase polymerase chain reaction assay confirmed by a second analysis point that indicated an increase of one log in relation to the first analysis point at two successive assessments or loss of major molecular response at one point.ResultsThe median molecular follow-up after treatment discontinuation was 77 months (range, 9 to 95 months). Sixty-one patients lost UMRD after a median of 2.5 months (range, 1 to 22 months), and one patient died with UMRD at 10 months. Molecular recurrence-free survival was 43% (95% CI, 33% to 52...

335 citations

Journal ArticleDOI
TL;DR: This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.
Abstract: Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.

333 citations

Journal ArticleDOI
TL;DR: The infectious diseases affecting patients with inborn errors of NF-κB-dependent TLR and IL-1R immunity are reviewed, finding that they were initially thought to be rare but have now been diagnosed in over 170 patients worldwide.
Abstract: Autosomal recessive IRAK-4 and MyD88 deficiencies predispose affected patients to recurrent invasive pyogenic bacterial infection. Both defects result in the selective impairment of cellular responses to Toll-like receptors (TLRs) other than TLR3 and of cellular responses to most interleukin-1 receptors (IL-1Rs), including IL-1R, IL-18R, and IL-33R. Hypomorphic mutations in the X-linked NEMO gene and hypermorphic mutations in the autosomal IKBA gene cause X-linked recessive and autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) syndromes. Both of these defects impair NF-κB-mediated cellular responses to multiple receptors, including TLRs, IL-1Rs, and tumor necrosis factor receptors (TNF-Rs). They therefore confer a much broader predisposition to infections than that for IRAK-4 and MyD88 deficiencies. These disorders were initially thought to be rare but have now been diagnosed in over 170 patients worldwide. We review here the infectious diseases affecting patients with inborn errors of NF-κB-dependent TLR and IL-1R immunity.

332 citations

Journal ArticleDOI
25 Jan 2016-PLOS ONE
TL;DR: Although in all models the muscle regenerates completely, the trajectories of the regenerative process vary considerably, and it is shown that histological parameters are not wholly sufficient to declare that regeneration is complete as molecular alterations could have a major persistent impact.
Abstract: A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised. We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite) cells (SC) and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®. We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models.

332 citations

Journal ArticleDOI
TL;DR: This ERS task force summarises the most recent scientific and methodological developments regarding respiratory mechanics and respiratory muscle assessment by addressing the validity, precision, reproducibility, prognostic value and responsiveness to interventions of various methods.
Abstract: Assessing respiratory mechanics and muscle function is critical for both clinical practice and research purposes. Several methodological developments over the past two decades have enhanced our understanding of respiratory muscle function and responses to interventions across the spectrum of health and disease. They are especially useful in diagnosing, phenotyping and assessing treatment efficacy in patients with respiratory symptoms and neuromuscular diseases. Considerable research has been undertaken over the past 17 years, since the publication of the previous American Thoracic Society (ATS)/European Respiratory Society (ERS) statement on respiratory muscle testing in 2002. Key advances have been made in the field of mechanics of breathing, respiratory muscle neurophysiology (electromyography, electroencephalography and transcranial magnetic stimulation) and on respiratory muscle imaging (ultrasound, optoelectronic plethysmography and structured light plethysmography). Accordingly, this ERS task force reviewed the field of respiratory muscle testing in health and disease, with particular reference to data obtained since the previous ATS/ERS statement. It summarises the most recent scientific and methodological developments regarding respiratory mechanics and respiratory muscle assessment by addressing the validity, precision, reproducibility, prognostic value and responsiveness to interventions of various methods. A particular emphasis is placed on assessment during exercise, which is a useful condition to stress the respiratory system.

332 citations


Authors

Showing all 21023 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Cyrus Cooper2041869206782
Jean-Laurent Casanova14484276173
Alain Fischer14377081680
Maxime Dougados134105469979
Carlos López-Otín12649483933
Giuseppe Viale12374072799
Thierry Poynard11966864548
Lorenzo Galluzzi11847771436
Shahrokh F. Shariat118163758900
Richard E. Tremblay11668545844
Olivier Hermine111102643779
Yehezkel Ben-Ari11045944293
Loïc Guillevin10880051085
Gérard Socié10792044186
Network Information
Related Institutions (5)
French Institute of Health and Medical Research
174.2K papers, 8.3M citations

96% related

University of Paris
174.1K papers, 5M citations

92% related

Erasmus University Rotterdam
91.2K papers, 4.5M citations

91% related

Emory University
122.4K papers, 6M citations

90% related

Université de Montréal
100.4K papers, 4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202279
20211,082
20201,994
20193,298
20183,323