scispace - formally typeset
Search or ask a question
Institution

ParisTech

EducationParis, France
About: ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Finite element method & Residual stress. The organization has 1888 authors who have published 1965 publications receiving 55532 citations. The organization is also known as: Paris Institute of Technology & ParisTech Développement.


Papers
More filters
Journal ArticleDOI
TL;DR: This work aims to raise awareness among mycologists and ecologists of the fungal dimension of invasions and of the need to intensify research in fungal ecology to address issues of future introductions.
Abstract: Fungi represent an essential component of biodiversity, not only because of the large number of species, but also for their ecological, evolutionary and socio-economic significance. Yet, until recently, fungi received scant consideration in ecology, especially invasion ecology. Their under-representation is largely the result of a lack of scientific knowledge of fungal biodiversity and ecology. With the exception of pathogenic fungi, which cause emergent infectious diseases, the impact of fungal invasions is often difficult to quantify owing to limited baseline data on fungal communities. Here, we aim to raise awareness among mycologists and ecologists of the fungal dimension of invasions and of the need to intensify research in fungal ecology to address issues of future introductions.

364 citations

Journal ArticleDOI
18 Sep 2008-Nature
TL;DR: This work designs magnetic colloids that, depending on both their shape and induced magnetization, self-assemble with controlled helicity, and shows that if the size ratio between the spheres is large enough, a single helicity is adopted, right or left.
Abstract: To advance the use of colloids as building blocks for the fabrication of large-scale complex structures for applications in nanotechnology, it is desirable to give them the functionality and variability found in chemistry. A step in that direction has now been achieved with the development of magnetic colloids that can rapidly self-assemble into a variety of isomeric forms. Depending on the shape of the colloidal blocks relative to their spontaneous direction of magnetization, these colloids self-assemble into structures with controlled helicity. If the size ratio between the colloidal spheres in the assembly is large enough, a single helicity is chosen, right or left. This work opens up a new link between colloidal science and chemistry that could lead to the assembly of a wide variety of nanoparticles and mesopolymers. Chirality is an important element of biology, chemistry and physics. Once symmetry is broken and a handedness is established, biochemical pathways are set. In DNA, the double helix arises from the existence of two competing length scales, one set by the distance between monomers in the sugar backbone, and the other set by the stacking of the base pairs1. Here we use a colloidal system to explore a simple forcing route to chiral structures. To do so we have designed magnetic colloids that, depending on both their shape and induced magnetization, self-assemble with controlled helicity. We model the two length scales with asymmetric colloidal dumbbells linked by a magnetic belt at their waist. In the presence of a magnetic field the belts assemble into a chain and the steric constraints imposed by the asymmetric spheres force the chain to coil. We show that if the size ratio between the spheres is large enough, a single helicity is adopted, right or left. The realization of chiral colloidal clusters opens up a new link between colloidal science and chemistry. These colloidal clusters may also find use as mesopolymers, as optical and light-activated structures2, and as models for enantiomeric separation.

349 citations

Journal ArticleDOI
03 Aug 2012-Science
TL;DR: The concept of transformation optics that manipulates electric and magnetic field lines, rather than rays, can provide an equally intuitive understanding of subwavelength phenomena; and at the same time can be an exact description at the level of Maxwell’s equations.
Abstract: Our intuitive understanding of light has its foundation in the ray approximation and is intimately connected with our vision. As far as our eyes are concerned, light behaves like a stream of particles. We look inside the wavelength and study the properties of plasmonic structures with dimensions of just a few nanometers, where at a tenth or even a hundredth of the wavelength of visible light the ray picture fails. We review the concept of transformation optics that manipulates electric and magnetic field lines, rather than rays; can provide an equally intuitive understanding of subwavelength phenomena; and at the same time can be an exact description at the level of Maxwell's equations.

320 citations

Journal ArticleDOI
TL;DR: Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
Abstract: To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.

310 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the databases used by the SIM model and assessed the 10-year simulation by using the observations of daily stream-flow, piezometric head, and snow depth.
Abstract: The hydrometeorological model SIM consists in a meterological analysis system (SAFRAN), a land surface model (ISBA) and a hydrogeological model (MODCOU). It generates atmospheric forcing at an hourly time step, and it computes water and surface energy budgets, the river ow at more than 900 rivergauging stations, and the level of several aquifers. SIM was extended over all of France in order to have a homogeneous nation-wide monitoring of the water resources: it can therefore be used to forecast flood risk and to monitor drought risk over the entire nation. The hydrometeorologival model was applied over a 10-year period from 1995 to 2005. In this paper the databases used by the SIM model are presented, then the 10-year simulation is assessed by using the observations of daily stream-flow, piezometric head, and snow depth. This assessment shows that SIM is able to reproduce the spatial and temporal variabilities of the water fluxes. The efficiency is above 0.55 (reasonable results) for 66 % of the simulated rivergages, and above 0.65 (rather good results) for 36 % of them. However, the SIM system produces worse results during the driest years, which is more likely due to the fact that only few aquifers are simulated explicitly. The annual evolution of the snow depth is well reproduced, with a square correlation coeficient around 0.9 over the large altitude range in the domain. The stream ow observations were used to estimate the overall error of the simulated latent heat ux, which was estimated to be less than 4 %.

306 citations


Authors

Showing all 1899 results

NameH-indexPapersCitations
Mathias Fink11690051759
George G. Malliaras9438228533
Mickael Tanter8558329452
Gerard Mourou8265334147
Catherine Lapierre7922718286
Carlo Adamo7544436092
Jean-François Joanny7229420700
Marie-Paule Lefranc7238121087
Paul B. Rainey7022217930
Vincent Lepetit7026826207
Bernard Asselain6940923648
Michael J. Baker6939420834
Jacques Prost6819819064
Jean-Philippe Vert6723517593
Jacques Mairesse6631020539
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

91% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

RWTH Aachen University
96.2K papers, 2.5M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202212
202174
202093
2019127
2018145