scispace - formally typeset
Search or ask a question
Institution

ParisTech

EducationParis, France
About: ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Residual stress & Finite element method. The organization has 1888 authors who have published 1965 publications receiving 55532 citations. The organization is also known as: Paris Institute of Technology & ParisTech Développement.


Papers
More filters
Journal ArticleDOI
TL;DR: Disc-based model predictions of a substantial set of experimental data on stiffness and strength of hydroxyapatite biomaterials almost attain the quality of the very satisfactory needle-based models, which suggests that, as long as the crystal shape is clearly non-spherical, its precise shape is of secondary importance if stiffness andstrength of hydroXYapatites are predicted on the basis of continuum micromechanics, from their micromorphology and porosity.
Abstract: The successful design of ceramic bone biomaterials is challenged by two competing requirements: on the one hand, such materials need to be stiff and strong, which would suggest a low porosity (of pore sizes in the 10-100 microm range) to be targeted; on the other hand, bone biomaterials need to be bioactive (in particular vascularized), which suggests a high porosity of such materials. Conclusively, reliable information on how porosity drives the stiffness and strength properties of ceramic bone biomaterials (tissue engineering scaffolds) is of great interest. In this context, mathematical models are increasingly being introduced into the field. Recently, self-consistent continuum micromechanics formulations have turned out as expressedly efficient and reliable tools to predict hydroxyapatite biomaterials' stiffness and strength, as a function of the biomaterial-specific porosity, and of the 'universal' properties of the individual hydroxyapatite crystals: their stiffness, strength and shape. However, the precise crystal shape can be suitably approximated by specific ellipsoidal shapes: while it was shown earlier that spherical shapes do not lead to satisfactory results, and that acicular shapes are an appropriate choice, we here concentrate on disc-type crystal shape as, besides needles, plates are often reported in micrographs of hydroxyapatite biomaterials. Disc-based model predictions of a substantial set of experimental data on stiffness and strength of hydroxyapatite biomaterials almost attain the quality of the very satisfactory needle-based models. This suggests that, as long as the crystal shape is clearly non-spherical, its precise shape is of secondary importance if stiffness and strength of hydroxyapatite biomaterials are predicted on the basis of continuum micromechanics, from their micromorphology and porosity.

38 citations

Journal ArticleDOI
TL;DR: In this article, the effect of wire phase transformation on the overall thermo-mechanical behavior of NiTi-epoxy composites has been investigated and it was found that using the wire with higher transformation stress improves the composite tensile strength.

38 citations

Journal ArticleDOI
TL;DR: Using time-dependent density functional theory and the polarizable continuum model, the authors simulated the absorption spectra of an extended series of azobenzene dyes and determined a theoretical level optimal for this important class of dyes.
Abstract: Using time-dependent density functional theory and the polarizable continuum model, we have simulated the absorption spectra of an extended series of azobenzene dyes. First, we have determined a theoretical level optimal for this important class of dyes, and it turned out that a C-PCM-CAM-B3LYP/6-311+G(d,p)//C-PCM-B3LYP/6-311G(d,p) approach represents an effective compromise between chemical accuracy and computational cost. In a second stage, we have compared the theoretical and experimental transition energies for 46 n π☆ and 141 π π☆ excitations. For the full set, that spans over a 302–565 nm domain, we obtained a mean absolute deviation of 13 nm (0.10 eV) and a linear correlation coefficient of 0.95, illustrating the accuracy of our approach, though some significant outliers pertained. In a last step, the impact of several modifications, that is, trans/cis isomerization, variation of the acidity of the medium and azo/hydrazo tautomerism have been modeled with two functionals. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

38 citations

Journal ArticleDOI
TL;DR: In this paper, a new optimisation framework for process inspection planning of a manufacturing system with multiple quality characteristics, in which the proposed framework is based on a mixed-integer mathematical programming (MILP) model.
Abstract: This study develops a new optimisation framework for process inspection planning of a manufacturing system with multiple quality characteristics, in which the proposed framework is based on a mixed-integer mathematical programming (MILP) model. Due to the stochastic nature of production processes and since their production processes are sensitive to manufacturing variations; a proportion of products do not conform the design specifications. A common source of these variations is maladjustment of each operation that leads to a higher number of scraps. Therefore, uncertainty in maladjustment is taken into account in this study. A twofold decision is made on the subject that which quality characteristic needs what kind of inspection, and the time this inspection should be performed. To cope with the introduced uncertainty, two robust optimisation methods are developed based on Taguchi and Monte Carlo methods. Furthermore, a genetic algorithm is applied to the problem to obtain near-optimal solutions. To vali...

38 citations

Journal ArticleDOI
TL;DR: This work considers a set V of elements and an optimization problem on V: the search for a maximum (or minimum) cardinality subset of V verifying a given property ℘, and studies d-transversals and d-blockers of stable sets or vertex covers in bipartite and in split graphs.
Abstract: We consider a set V of elements and an optimization problem on V: the search for a maximum (or minimum) cardinality subset of V verifying a given property ?. A d-transversal is a subset of V which intersects any optimum solution in at least d elements while a d-blocker is a subset of V whose removal deteriorates the value of an optimum solution by at least d. We present some general characteristics of these problems, we review some situations which have been studied (matchings, s---t paths and s---t cuts in graphs) and we study d-transversals and d-blockers of stable sets or vertex covers in bipartite and in split graphs.

38 citations


Authors

Showing all 1899 results

NameH-indexPapersCitations
Mathias Fink11690051759
George G. Malliaras9438228533
Mickael Tanter8558329452
Gerard Mourou8265334147
Catherine Lapierre7922718286
Carlo Adamo7544436092
Jean-François Joanny7229420700
Marie-Paule Lefranc7238121087
Paul B. Rainey7022217930
Vincent Lepetit7026826207
Bernard Asselain6940923648
Michael J. Baker6939420834
Jacques Prost6819819064
Jean-Philippe Vert6723517593
Jacques Mairesse6631020539
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

91% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

RWTH Aachen University
96.2K papers, 2.5M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202212
202174
202093
2019127
2018145