Institution
Paul Scherrer Institute
Facility•Villigen, Switzerland•
About: Paul Scherrer Institute is a(n) facility organization based out in Villigen, Switzerland. It is known for research contribution in the topic(s): Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publication(s) receiving 890129 citation(s). The organization is also known as: PSI.
Topics: Neutron, Large Hadron Collider, Magnetization, Muon, Aerosol
Papers published on a yearly basis
Papers
More filters
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions., plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors., probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology.
11,048 citations
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.
Abstract: Results are presented from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and 5.3 inverse femtobarns at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, WW, tau tau, and b b-bar. An excess of events is observed above the expected background, a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4 (stat.) +/- 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.
8,357 citations
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.
4,663 citations
TL;DR: In this article, the fundamental principles, performance, characteristics, present and future applications of electrochemical capacitors are presented in this communication, and different applications demanding large ECs with high voltage and improved energy and power density are under discussion.
Abstract: Electrochemical capacitors (EC) also called ‘supercapacitors’ or ‘ultracapacitors’ store the energy in the electric field of the electrochemical double-layer. Use of high surface-area electrodes result in extremely large capacitance. Single cell voltage of ECs is typically limited to 1–3 V depending on the electrolyte used. Small electrochemical capacitors for low-voltage electronic applications have been commercially available for many years. Different applications demanding large ECs with high voltage and improved energy and power density are under discussion. Fundamental principles, performance, characteristics, present and future applications of electrochemical capacitors are presented in this communication.
4,029 citations
University of Gothenburg1, University College Cork2, Paul Scherrer Institute3, Weizmann Institute of Science4, Norwegian Meteorological Institute5, Chalmers University of Technology6, University of Antwerp7, Carnegie Mellon University8, Centre national de la recherche scientifique9, University of Lyon10, University of California, Berkeley11, University of York12, Leibniz Institute for Neurobiology13, University of Mainz14, University of Florida15, University of Colorado Boulder16, Forschungszentrum Jülich17, Ghent University18, University of Manchester19, Aix-Marseille University20, California Institute of Technology21
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
2,925 citations
Authors
Showing all 9248 results
Name | H-index | Papers | Citations |
---|---|---|---|
Andrea Bocci | 172 | 2402 | 176461 |
Tobin J. Marks | 159 | 1621 | 111604 |
Wolfgang Wagner | 156 | 2342 | 123391 |
David D'Enterria | 150 | 1592 | 116210 |
Andreas Pfeiffer | 149 | 1756 | 131080 |
Christoph Grab | 144 | 1359 | 144174 |
Maurizio Pierini | 143 | 1782 | 104406 |
Alexander Belyaev | 142 | 1895 | 100796 |
Ajit Kumar Mohanty | 141 | 1124 | 93062 |
Felicitas Pauss | 141 | 1623 | 104493 |
Chiara Mariotti | 141 | 1426 | 98157 |
Luc Pape | 141 | 1441 | 130253 |
Rainer Wallny | 141 | 1661 | 105387 |
Roland Horisberger | 139 | 1471 | 100458 |
Emmanuelle Perez | 138 | 1550 | 99016 |