scispace - formally typeset
Search or ask a question

Showing papers by "Paul Scherrer Institute published in 2010"


Journal ArticleDOI
Koji Nakamura1, K. Hagiwara, Ken Ichi Hikasa2, Hitoshi Murayama3  +180 moreInstitutions (92)
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

2,788 citations


Journal ArticleDOI
TL;DR: The solid electrolyte interphase (SEI) is a protecting layer formed on the negative electrode of Li-ion batteries as a result of electrolyte decomposition, mainly during the first cycle as discussed by the authors.

2,386 citations


Journal ArticleDOI
24 Dec 2010-Science
TL;DR: By using a solar cavity-receiver reactor, the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO2 and H2O, yielding CO andH2, respectively were combined and stable and rapid generation of fuel was demonstrated over 500 cycles.
Abstract: Because solar energy is available in large excess relative to current rates of energy consumption, effective conversion of this renewable yet intermittent resource into a transportable and dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low conversion efficiencies, particularly with CO_2 reduction, as well as utilization of precious materials have limited the practical generation of solar fuels. By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO_2 and H_2O, yielding CO and H_2, respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale and design rather than by chemistry.

1,257 citations


Journal ArticleDOI
08 Jul 2010-Nature
TL;DR: The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent by electron–proton scattering experiments, and the present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants.
Abstract: Considering that the proton is a basic subatomic component of all ordinary matter — as well as being ubiquitous in its solo role as the hydrogen ion H+ — there are some surprising gaps in our knowledge of its structure and behaviour. A collaborative project to determine the root-mean-square charge radius of the proton to better than the 1% accuracy of the current 'best' value suggests that those knowledge gaps may be greater than was thought. The new determination comes from a technically challenging spectroscopic experiment — the measurement of the Lamb shift (the energy difference between a specific pair of energy states) in 'muonic hydrogen', an exotic atom in which the electron is replaced by its heavier twin, the muon. The result is unexpected: a charge radius about 4% smaller than the previous value. The discrepancy remains unexplained. Possible implications are that the value of the most accurately determined fundamental constant, the Rydberg constant, will need to be revised — or that the validity of quantum electrodynamics theory is called into question. Here, a technically challenging spectroscopic experiment is described: the measurement of the muonic Lamb shift. The results lead to a new determination of the charge radius of the proton. The new value is 5.0 standard deviations smaller than the previous world average, a large discrepancy that remains unexplained. Possible implications of the new finding are that the value of the Rydberg constant will need to be revised, or that the validity of quantum electrodynamics theory is called into question. The proton is the primary building block of the visible Universe, but many of its properties—such as its charge radius and its anomalous magnetic moment—are not well understood. The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent (at best) by electron–proton scattering experiments1,2. The present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants3. This value is based mainly on precision spectroscopy of atomic hydrogen4,5,6,7 and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of rp as deduced from electron–proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant3). An attractive means to improve the accuracy in the measurement of rp is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift10 (the energy difference between the 2S1/2 and 2P1/2 states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations11,12,13,14,15 of fine and hyperfine splittings and QED terms, we find rp = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value3 of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by −110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.

1,152 citations


Journal ArticleDOI
01 Aug 2010-Fuel
TL;DR: A review of the processes developed for the production of SNG from coal during the sixties and seventies and the recent developments for SNG production from coal and from dry biomass can be found in this paper.

878 citations


Journal ArticleDOI
23 Sep 2010-Nature
TL;DR: An X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption is described.
Abstract: X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

823 citations


Journal ArticleDOI
TL;DR: In this article, the authors present results from the factor analysis of 43 AMS datasets (27 of the datasets are reanalyzed in this work) and provide a holistic overview of Northern Hemisphere organic aerosol (OA) and its evolution in the atmosphere.
Abstract: . In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA) and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA), hydrocarbon-like OA (HOA), and sometimes other components such as biomass burning OA (BBOA). We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA) and semi-volatile OOA (SV-OOA). Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+) and m/z 43 (mostly C2H3O+), which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum) and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum) than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14) and SV-OOA (0.07±0.04, 0.35±0.14) components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA) from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient) observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a surrogate for O:C and an indicator of photochemical aging) increases. This indicates that ambient OA converges towards highly aged LV-OOA with atmospheric oxidation. The common features of the transformation between SV-OOA and LV-OOA at multiple sites potentially enable a simplified description of the oxidation of OA in the atmosphere. Comparison of laboratory SOA data with ambient OOA indicates that laboratory SOA are more similar to SV-OOA and rarely become as oxidized as ambient LV-OOA, likely due to the higher loadings employed in the experiments and/or limited oxidant exposure in most chamber experiments.

792 citations


Journal ArticleDOI
TL;DR: The pre-print version of the Published Article can be accessed from the link below - Copyright @ 2010 Springer Verlag as discussed by the authors, which can be viewed as a preprint of the published article.
Abstract: This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer Verlag

717 citations


Journal ArticleDOI
F. D. Aaron1, Halina Abramowicz2, I. Abt3, Leszek Adamczyk4  +538 moreInstitutions (69)
TL;DR: In this article, a combination of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e(+/-)p scattering at HERA during the period 1994-2000 is presented.
Abstract: A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e(+/-)p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q(2), and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

624 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that AAE values for an Aerosol Robotic Network (AERONET) set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type.
Abstract: . Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The main purpose of this paper is to show that AAE values for an Aerosol Robotic Network (AERONET) set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD) analyses and airborne in situ analyses examined in this paper, as well as many other previous results. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which seeks to provide retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Multidimensional cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

547 citations


Journal ArticleDOI
18 Nov 2010-Nature
TL;DR: The findings prove that the quantum spin dynamics can be observed in SMMs chemically grafted to surfaces, and offer a tool to reveal the organization of matter at the nanoscale.
Abstract: Single-molecule magnets are molecular complexes with magnetic bistability, and recently it was shown that such a magnetic memory effect is retained for Fe4 clusters when they are wired to a gold surface. These authors have tailored the clusters to have a preferential orientation and form a self-assembled monolayer on the surface. It then becomes possible to observe quantum tunnelling of the magnetization, which shows up as steps in the magnetic hysteresis loop.

Journal ArticleDOI
TL;DR: The results of high-resolution electron microscopy and small angle and inelastic neutron scattering along with corresponding thermoelectric property measurements corroborate that the 10-20 nm nanocrystalline domains with coherent boundaries are the key constituent that accounts for the resulting exceptionally low lattice thermal conductivity and significant improvement of ZT.
Abstract: Herein, we report the synthesis of multiscale nanostructured p-type (Bi,Sb)2Te3 bulk materials by melt-spinning single elements of Bi, Sb, and Te followed by a spark plasma sintering process. The samples that were most optimized with the resulting composition (Bi0.48Sb1.52Te3) and specific nanostructures showed an increase of ∼50% or more in the figure of merit, ZT, over that of the commercial bulk material between 280 and 475 K, making it suitable for commercial applications related to both power generation and refrigeration. The results of high-resolution electron microscopy and small angle and inelastic neutron scattering along with corresponding thermoelectric property measurements corroborate that the 10−20 nm nanocrystalline domains with coherent boundaries are the key constituent that accounts for the resulting exceptionally low lattice thermal conductivity and significant improvement of ZT.

Journal ArticleDOI
TL;DR: In this article, the authors measured the transverse momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV with the inner tracking system of the CMS detector at the LHC.
Abstract: Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the excess negative charge can be fully compensated by noncovalently functionalizing graphene with the strong electron-acceptor tetrafluorotetracyanoquinodimethane (F4-TCNQ) charge transfer complex.
Abstract: Epitaxial graphene on SiC(0001) suffers from strong intrinsic $n$-type doping We demonstrate that the excess negative charge can be fully compensated by noncovalently functionalizing graphene with the strong electron-acceptor tetrafluorotetracyanoquinodimethane (F4-TCNQ) Charge neutrality can be reached in monolayer graphene as shown in electron-dispersion spectra from angular-resolved photoemission spectroscopy In bilayer graphene the band-gap that originates from the SiC/graphene interface dipole increases with increasing F4-TCNQ deposition and, as a consequence of the molecular doping, the Fermi level is shifted into the band-gap The reduction in the charge-carrier density upon molecular deposition is quantified using electronic Fermi surfaces and Raman spectroscopy The structural and electronic characteristics of the graphene/F4-TCNQ charge-transfer complex are investigated by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy The doping effect on graphene is preserved in air and is temperature resistant up to $200\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$ Furthermore, graphene noncovalent functionalization with F4-TCNQ can be implemented not only via evaporation in ultrahigh vacuum but also by wet chemistry

Journal ArticleDOI
TL;DR: In this article, a new numerical module is proposed to compute the optical properties for 5 complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models, which is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated.
Abstract: Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for 5 complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles. The construction of look-up tables from the imaginary and the real part of the com10 plex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated. These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation 15 with a very cheap computationally cost.

Journal ArticleDOI
TL;DR: In this article, the authors present data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, for which uptake coefficients and adsorption parameters have been presented.
Abstract: . This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

Journal ArticleDOI
TL;DR: In this paper, the bulk composition of organic aerosol from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H:C versus O:C), characterized by a slope of ∼−1.
Abstract: [1] Organic aerosol (OA) in the atmosphere consists of a multitude of organic species which are either directly emitted or the products of a variety of chemical reactions This complexity challenges our ability to explicitly characterize the chemical composition of these particles We find that the bulk composition of OA from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H:C versus O:C), characterized by a slope of ∼−1 The data show that atmospheric aging, involving processes such as volatilization, oxidation, mixing of air masses or condensation of further products, is consistent with movement along this line, producing a more oxidized aerosol This finding has implications for our understanding of the evolution of atmospheric OA and representation of these processes in models

Journal ArticleDOI
TL;DR: In this paper, the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species was investigated, and the measured particle formation rates were proportional to the product of the concentrations of H 2 SO4 and an organic molecule.
Abstract: New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

Journal ArticleDOI
TL;DR: In this article, the authors present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of-the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets.
Abstract: . A workshop was held in the framework of the ACCENT (Atmospheric Composition Change – a European Network) Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

Journal ArticleDOI
TL;DR: In this paper, a graphitization system for radiocarbon measurement by means of accelerator mass spectrometry has been developed for convenient, fast and efficient sample preparations for radiocalarbon measurement.
Abstract: A new graphitisation system, directly coupled to an elemental analyser, has been developed for convenient, fast and efficient sample preparations for radiocarbon measurement by means of accelerator mass spectrometry. We demonstrate an alternative to the cryogenic transport of CO2 into the graphitisation reactors with liquid nitrogen, which is used by others. Instead, the CO2 coming from an EA is absorbed on a single column filled with zeolite. The CO2 can then be easily released by heating the zeolite trap and transferred to the reactor by gas expansion. The system is simple and fully automated for sample combustion and graphitisation.

Journal ArticleDOI
TL;DR: In this article, the authors used neutron radiography to image water content distributions in soil samples planted with lupins during drying and subsequent rewetting, and derived the distinct, hysteretic and time-dependent water retention curve of the rhizosphere.
Abstract: Water flow from soil to plants depends on the properties of the soil next to roots, the rhizosphere. Although several studies showed that the rhizosphere has different properties than the bulk soil, effects of the rhizosphere on root water uptake are commonly neglected. To investigate the rhizosphere’s properties we used neutron radiography to image water content distributions in soil samples planted with lupins during drying and subsequent rewetting. During drying, the water content in the rhizosphere was 0.05 larger than in the bulk soil. Immediately after rewetting, the picture reversed and the rhizosphere remained markedly dry. During the following days the water content of the rhizosphere increased and after 60 h it exceeded that of the bulk soil. The rhizosphere’s thickness was approximately 1.5 mm. Based on the observed dynamics, we derived the distinct, hysteretic and time-dependent water retention curve of the rhizosphere. Our hypothesis is that the rhizosphere’s water retention curve was determined by mucilage exuded by roots. The rhizosphere properties reduce water depletion around roots and weaken the drop of water potential towards roots, therefore favoring water uptake under dry conditions, as demonstrated by means of analytical calculation of water flow to a single root.

Journal ArticleDOI
TL;DR: In this article, the 3D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006.
Abstract: . It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20–30 μg sm−3 ppm−1 up to 60–70 μg sm−3 ppm−1 between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio.

Journal ArticleDOI
TL;DR: The features of BTG were tested for the preparation of immunoconjugates that are functionalized with different metal chelators and radiolabeled with different diagnostic and therapeutic radionuclides, where low off-target accumulation of radioactivity is crucial.
Abstract: The therapeutic efficacy of antibodies can be substantially enhanced by conjugation of cytotoxic compounds such as chemotherapeutics and particle-emitting radionuclides. Intuitively one would assume that the therapeutic index would improve as the number of cytotoxic entities conjugated to the antibody increases. However, recent studies on auristatin–antibody conjugates in mice have demonstrated that a drug/antibody molar ratio of 4:1 results in optimal efficacy and in vivo tolerability. Unfortunately, conventional chemical strategies for protein modification are difficult to control and give rise to heterogeneous populations of immunoconjugates with variable stoichiometries, each of which has its own in vivo characteristics. The introduction of artificial, bio-orthogonal groups for site-specific and stoichiometric protein modification offers a potential solution to this problem. Such strategies are en vogue but are often laborious and still risk product heterogeneity. Transglutaminases (TGs, E.C. 2.3.2.13) catalyze acyltransfer reactions between the g-carboxamide group of glutamine (a side chain, which is otherwise chemically inert under physiological conditions) and the primary e-amino group of lysine, to form catabolically stable isopeptide bonds (Figure 1a). Most TGs are promiscuous with respect to the lysine substrate and accept even simple 5-aminopentyl groups as lysine surrogates. The criteria for a glutamine residue to be recognized by the enzyme, however, are muchmore stringent: it should be both located in a flexible region of the protein and flanked by specific amino acids. Given this inherent selectivity, we hypothesized that TG would be an alternative for the site-specific and stoichiometric functionalization of antibodies. For this study we used bacterial transglutaminase (BTG) because it is robust, inexpensive, and easy to handle. Our group is interested in radioimmunoconjugates for diagnostic and therapeutic applications, where low off-target accumulation of radioactivity is crucial. Earlier studies performed with radiolabeled monoclonal antibodies (mAbs) demonstrated that high numbers of metal chelators adversely affect the biological behavior of radioimmunoconjugates. Therefore, we tested the features of BTG for the preparation of immunoconjugates that are functionalized with different metal chelators and radiolabeled with different diagnostic and therapeutic radionuclides. Deferoxamine (DF, 1), an antidote for metal poisoning, has recently been identified as a suitable chelator for radionuclides such as Ga and Zr. During the course of our studies we recognized that without further derivatization deferoxamine is already a potent BTG substrate. Furthermore, the metal chelating system 4-(1,4,8,11tetraazacyclotetradec-1-yl)methyl benzoic acid (CPTA, 2) was derivatized with a 1,5-diaminopentane (cadaverine) spacer (Figure 1b; see the Supporting Information for details on the synthesis). To probe the scope of the new strategy we investigated other (model) substrates, which are of potential Figure 1. a) TG-mediated modification of Gln (Q) with a substrate containing lysine or a lysine surrogate. b) Substrates used in this study.

Journal ArticleDOI
TL;DR: Concepts and technical realization of the high-resolution soft X-ray beamline ADRESS at the Swiss Light Source as well as diagnostics tools and alignment strategies are described.
Abstract: The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given.

Journal ArticleDOI
TL;DR: In this paper, the authors present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ∼1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project.
Abstract: We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ∼1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale. © Author(s) 2010.

Journal ArticleDOI
TL;DR: In this paper, the authors used the high-resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region.
Abstract: . Organic aerosol (OA) represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB) influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF) analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA), low-volatility OOA (LV-OOA), and biomass burning OA (BBOA). A reduced "hydrocarbon-like OA" (HOA) component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1) and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90%) anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species). WRF-FLEXPART calculated fire impact factors (FIF) show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field due to model transport errors. This component is small or absent when forest fires are suppressed by precipitation. Since PMF factors represent organic species grouped by chemical similarity, additional postprocessing is needed to more directly apportion OA amounts to sources, which is done here based on correlations to different tracers. The postprocessed AMS results are similar to those from an independent source apportionment based on multiple linear regression with gas-phase tracers. During a flight with very high forest fire intensity near the basin OA arising from open BB represents ~66% of the OA mass in the basin and contributes similarly to OA mass in the outflow. Aging and SOA formation of BB emissions is estimated to add OA mass equivalent to about ~32–42% of the primary BBOA over several hours to a day.

Journal ArticleDOI
TL;DR: Laser ablation propulsion (LAP) is a major new electric propulsion concept with a 35-year history as mentioned in this paper, where an intense pulsed or continuous wave (CW) strikes a condensed matter surface (solid or liquid) and produces a jet of vapor or plasma.
Abstract: LASER ablation propulsion (LAP) is a major new electric propulsion concept with a 35-year history. In LAP, an intense laser beam [pulsed or continuous wave (CW)] strikes a condensedmatter surface (solid or liquid) and produces a jet of vapor or plasma. Just as in a chemical rocket, thrust is produced by the resulting reaction force on the surface. Spacecraft and other objects can be propelled in this way. In some circumstances, there are advantages for this technique compared with other chemical and electric propulsion schemes. It is difficult to make a performance metric for LAP, because only a few of its applications are beyond the research phase and because it can be applied in widely different circumstances that would require entirely different metrics. These applications range from milliwatt-average-power satellite attitude-correction thrusters through kilowatt-average-power systems for reentering near-Earth space debris and megawatt-to-gigawatt systems for direct launch to lowEarth orbit (LEO). We assume an electric laser rather than a gas-dynamic or chemical laser driving the ablation, to emphasize the performance as an electric thruster. How is it possible for moderate laser electrical efficiency to givevery high electrical efficiency? Because laser energy can be used to drive an exothermic reaction in the target material controlled by the laser input, and electrical efficiency only measures the ratio of exhaust power to electrical power. This distinction may seem artificial, but electrical efficiency is a key parameter for space applications, in which electrical power is at a premium. The laser system involved in LAP may be remote from the propelled object (on another spacecraft or planet-based), for example, in laser-induced space-debris reentry or payload launch to low planetary orbit. In other applications (e.g., the laser–plasma microthruster that we will describe), a lightweight laser is part of the propulsion engine onboard the spacecraft.

Journal ArticleDOI
TL;DR: In this paper, real-time measurements of non-refractory submicron aerosols (NR-PM1) were conducted within the greater Alpine region (Switzerland, Germany, Austria, France and Liechtenstein) during several week-long field campaigns in 2002-2009.
Abstract: . Real-time measurements of non-refractory submicron aerosols (NR-PM1) were conducted within the greater Alpine region (Switzerland, Germany, Austria, France and Liechtenstein) during several week-long field campaigns in 2002–2009. This region represents one of the most important economic and recreational spaces in Europe. A large variety of sites was covered including urban backgrounds, motorways, rural, remote, and high-alpine stations, and also mobile on-road measurements were performed. Inorganic and organic aerosol (OA) fractions were determined by means of aerosol mass spectrometry (AMS). The data originating from 13 different field campaigns and the combined data have been utilized for providing an improved temporal and spatial data coverage. The average mass concentration of NR-PM1 for the different campaigns typically ranged between 10 and 30 μg m−3. Overall, the organic portion was most abundant, ranging from 36% to 81% of NR-PM1. Other main constituents comprised ammonium (5–15%), nitrate (8–36%), sulfate (3–26%), and chloride (0–5%). These latter anions were, on average, fully neutralized by ammonium. As a major result, time of the year (winter vs. summer) and location of the site (Alpine valleys vs. Plateau) could largely explain the variability in aerosol chemical composition for the different campaigns and were found to be better descriptors for aerosol composition than the type of site (urban, rural etc.). Thus, a reassessment of classifications of measurements sites might be considered in the future, possibly also for other regions of the world. The OA data was further analyzed using positive matrix factorization (PMF) and the multi-linear engine ME (factor analysis) separating the total OA into its underlying components, such as oxygenated (mostly secondary) organic aerosol (OOA), hydrocarbon-like and freshly emitted organic aerosol (HOA), as well as OA from biomass burning (BBOA). OOA was ubiquitous, ranged between 36% and 94% of OA, and could be separated into a low-volatility and a semi-volatile fraction (LV-OOA and SV-OOA) for all summer campaigns at low altitude sites. Wood combustion (BBOA) accounted for a considerable fraction during wintertime (17–49% OA), particularly in narrow Alpine valleys BBOA was often the most abundant OA component. HOA/OA ratios were comparatively low for all campaigns (6–16%) with the exception of on-road, mobile measurements (23%) in the Rhine Valley. The abundance of the aerosol components and the retrievability of SV-OOA and LV-OOA are discussed in the light of atmospheric chemistry and physics.

Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: Early conformational changes that precede larger rigid-body helix movements are revealed, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.
Abstract: Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.

Journal ArticleDOI
TL;DR: In this article, the authors identified and quantified the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes, and the results showed a major influence of vehicle induced resuspension of road dust.