scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
TL;DR: X-ray diffraction experiments reveal that spatial charge ordering occurs in the pseudogap state of YBa2Cu3O6.67 as discussed by the authors, which competes with high-temperature superconductivity, and their relative strengths can be tuned using a magnetic field.
Abstract: X-ray diffraction experiments reveal that spatial charge ordering occurs in the pseudogap state of YBa2Cu3O6.67. Moreover, this charge ordered state competes with high-temperature superconductivity, and their relative strengths can be tuned using a magnetic field.

830 citations

Journal ArticleDOI
TL;DR: In this article, a method for efficient calculation of the electrostatic potential due to the nuclei and the continuous electronic charge distribution in a crystal or a large molecule is presented, under the control of a single tolerance parameter.
Abstract: A method is presented for efficient calculation of the electrostatic potential due to the nuclei and the continuous electronic charge distribution in a crystal or a large molecule. Accuracy is under the control of a single tolerance parameter. The computational cost for the calculation of the static potential on the entire grid and for static energy evaluation scales asymptotically as O(N) with a favorable prefactor.

827 citations

Journal ArticleDOI
23 Sep 2010-Nature
TL;DR: An X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption is described.
Abstract: X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

823 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a recommended terminology to clarify the terms used for black carbon in atmospheric research, with the goal of establishing unambiguous links between terms, targeted material properties and associated measurement techniques.
Abstract: . Although black carbon (BC) is one of the key atmospheric particulate components driving climate change and air quality, there is no agreement on the terminology that considers all aspects of specific properties, definitions, measurement methods, and related uncertainties. As a result, there is much ambiguity in the scientific literature of measurements and numerical models that refer to BC with different names and based on different properties of the particles, with no clear definition of the terms. The authors present here a recommended terminology to clarify the terms used for BC in atmospheric research, with the goal of establishing unambiguous links between terms, targeted material properties and associated measurement techniques.

817 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298