scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
Halina Abramowicz1, I. Abt2, Leszek Adamczyk3, M. Adamus  +486 moreInstitutions (62)
TL;DR: In this article, the effect of different heavy flavour schemes on the parton distribution functions was investigated. And the running mass of the charm quark was determined using the fixed flavour number scheme.
Abstract: Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections \(\sigma_{\rm red}^{c\bar{c}}\) for charm production are obtained in the kinematic range of photon virtuality 2.5≤Q2≤2000 GeV2 and Bjorken scaling variable 3⋅10−5≤x≤5⋅10−2. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

209 citations

Journal ArticleDOI
TL;DR: In this article, a rearrangement of the C-A-S-H structure was found to result in shorter silica chains and less calcium is present in the interlayer.

209 citations

Journal ArticleDOI
TL;DR: In this article, the positive-muon spin rotation and relaxation technique (also known as the {mu}SR technique) has been applied to investigate the peculiar magnetic properties of these ground states and improve our knowledge of heavy-fermion phenomena.
Abstract: The author attempts to give a comprehensive discussion of studies performed with the positive-muon spin rotation and relaxation technique (also known as the {mu}SR technique) on heavy-fermion compounds. The subtle competition between the demagnetizing Kondo interaction and the intersite Ruderman-Kittel-Kasuya-Yosida exchange interaction is believed to be the primary ingredient for the wealth of different ground states observed for this class of rare-earth{endash} and actinide-containing intermetallic compounds. Due to its microscopic character, its sensitivity to extremely small internal fields, and its capacity to detect spatially inhomogeneous magnetic features, the {mu}SR technique has been extensively utilized to investigate the peculiar magnetic properties of these ground states and improve our knowledge of heavy-fermion phenomena. In addition to providing a short introduction to {mu}SR, where the intrinsic difficulties of the method are clearly stated, this article reviews the main results obtained by this technique on the best-known heavy-fermion compounds (superconductors, band magnets, local-moment magnets, non-Fermi-liquid systems, and Kondo insulators). Special emphasis is placed on the particular information obtainable by monitoring the implanted muon. {copyright} {ital 1997} {ital The American Physical Society}

209 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized studies done at synchrotron radiation facilities that illustrate the capability to determine catalyst structure using X-ray absorption spectroscopy (XAS) and XES.
Abstract: Knowledge of the structure of catalysts is essential to understand their behavior, which further facilitates development of an active, selective, and stable catalyst. Determining the structure of a functioning catalyst is essential in this regard. The structure of a catalyst is prone to change during the catalytic process and needs to be determined in its working conditions. In this tutorial review, we have summarized studies done at synchrotron radiation facilities that illustrate the capability to determine catalyst structure using X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). These studies aim at facilitating the determination of the dynamic structure-performance relationships during a catalytic process.

209 citations

Journal ArticleDOI
TL;DR: In this article, a thermochemical cyclic process and associated reactor is presented for the continuous removal of CO2 from ambient air via consecutive CaO-carbonation and CaCO3-calcination steps using concentrated solar energy as the source of high-temperature process heat.

209 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298