scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
TL;DR: Real-time imaging provided a more detailed fundamental understanding of the elementary processes in porous media, such as hysteresis, snap-off, and nonwetting phase entrapment, and it opens the way for a rigorous process for upscaling based on thermodynamic models.
Abstract: Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10–20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding of the elementary processes in porous media, such as hysteresis, snap-off, and nonwetting phase entrapment, and it opens the way for a rigorous process for upscaling based on thermodynamic models.

511 citations

Journal ArticleDOI
TL;DR: A simple extension of the Meiklejohn and Bean model is proposed to account quantitatively for the exchange bias fields in the three studied systems from the experimentally determined number of pinned moments and their sizes.
Abstract: Using x-ray magnetic circular dichroism, we have detected the very interfacial spins that are responsible for the horizontal loop shift in three different exchange bias sandwiches, chosen because of their potential for device applications. The "pinned" uncompensated interfacial spins constitute only a fraction of a monolayer and do not rotate in an external magnetic field since they are tightly locked to the antiferromagnetic lattice. A simple extension of the Meiklejohn and Bean model is proposed to account quantitatively for the exchange bias fields in the three studied systems from the experimentally determined number of pinned moments and their sizes.

509 citations

Journal ArticleDOI
Jasmin Tröstl1, Wayne Chuang2, Hamish Gordon3, Martin Heinritzi4, Chao Yan5, Ugo Molteni1, Lars Ahlm6, Carla Frege1, F. Bianchi5, F. Bianchi7, F. Bianchi1, Robert Wagner5, Mario Simon4, Katrianne Lehtipalo5, Katrianne Lehtipalo1, Christina Williamson8, Christina Williamson9, Christina Williamson4, J. S. Craven10, Jonathan Duplissy11, Jonathan Duplissy5, Alexey Adamov5, Joao Almeida3, Anne-Kathrin Bernhammer12, Martin Breitenlechner12, Sophia Brilke4, Antonio Dias3, Sebastian Ehrhart3, Richard C. Flagan10, Alessandro Franchin5, Claudia Fuchs1, Roberto Guida3, Martin Gysel1, Armin Hansel12, Christopher R. Hoyle1, Tuija Jokinen5, Heikki Junninen5, Juha Kangasluoma5, Helmi Keskinen5, Helmi Keskinen8, Helmi Keskinen13, Jaeseok Kim13, Jaeseok Kim8, Manuel Krapf1, Andreas Kürten4, Ari Laaksonen13, Ari Laaksonen14, Michael J. Lawler15, Michael J. Lawler13, Markus Leiminger4, Serge Mathot3, Ottmar Möhler16, Tuomo Nieminen5, Tuomo Nieminen11, Antti Onnela3, Tuukka Petäjä5, Felix Piel4, Pasi Miettinen13, Matti P. Rissanen5, Linda Rondo4, Nina Sarnela5, Siegfried Schobesberger8, Siegfried Schobesberger5, Kamalika Sengupta17, Mikko Sipilä5, James N. Smith13, James N. Smith18, Gerhard Steiner19, Gerhard Steiner5, Gerhard Steiner12, António Tomé20, Annele Virtanen13, Andrea Christine Wagner4, Ernest Weingartner1, Ernest Weingartner8, Daniela Wimmer5, Daniela Wimmer4, Paul M. Winkler19, Penglin Ye2, Kenneth S. Carslaw17, Joachim Curtius4, Josef Dommen1, Jasper Kirkby4, Jasper Kirkby3, Markku Kulmala5, Ilona Riipinen6, Douglas R. Worsnop5, Douglas R. Worsnop11, Neil M. Donahue5, Neil M. Donahue2, Urs Baltensperger1 
26 May 2016-Nature
TL;DR: It is shown that organic vapours alone can drive nucleation, and a particle growth model is presented that quantitatively reproduces the measurements and implements a parameterization of the first steps of growth in a global aerosol model that can change substantially in response to concentrations of atmospheric cloud concentration nuclei.
Abstract: About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

507 citations

Journal ArticleDOI
Bernardo Adeva1, M. Aguilar-Benitez, H. Akbari2, J. Alcaraz  +587 moreInstitutions (26)
TL;DR: The L3 experiment as discussed by the authors is one of the six large detectors designed for the new generation of electron-positron accelerators, which is the only detector that concentrates its efforts on limited goals of measuring electrons, muons and photons.
Abstract: The L3 experiment is one of the six large detectors designed for the new generation of electron-positron accelerators. It is the only detector that concentrates its efforts on limited goals of measuring electrons, muons and photons. By not attempting to identify hadrons, L3 has been able to provide an order of magnitude better resolution for electrons, muons and photons. Vertices and hadron jets are also studied. The construction of L3 has involved much state of the art technology in new principles of vertex detection and in new crystals for large scale electromagnetic shower detection and ultraprecise muon detection. This paper presents a summary of the construction of L3.

505 citations

Journal ArticleDOI
Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2285 moreInstitutions (147)
TL;DR: In this paper, an improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb^(-1) collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented.
Abstract: Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb^(-1) collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum p_T are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15–20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided. The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (p_T > 30 GeV and 0|η| 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with p_T of the order of 165–330 GeV, and |η| < 0.8.

505 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298