scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
TL;DR: Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms.
Abstract: Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: β-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms.

457 citations

Journal ArticleDOI
07 Aug 2012-ACS Nano
TL;DR: The electronic band gap and dispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis are reported on and are in quantitative agreement with theoretical predictions that include image charge corrections accounting for screening by the metal substrate and confirm the importance of electron-electron interactions in graphene nan oribbons.
Abstract: Some of the most intriguing properties of graphene are predicted for specifically designed nanostructures such as nanoribbons. Functionalities far beyond those known from extended graphene systems include electronic band gap variations related to quantum confinement and edge effects, as well as localized spin-polarized edge states for specific edge geometries. The inability to produce graphene nanostructures with the needed precision, however, has so far hampered the verification of the predicted electronic properties. Here, we report on the electronic band gap and dispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis. Angle-resolved photoelectron spectroscopy and scanning tunneling spectroscopy data from armchair graphene nanoribbons of width N = 7 supported on Au(111) reveal a band gap of 2.3 eV, an effective mass of 0.21 m0 at the top of the valence band, and an energy-dependent charge carrier velocity reaching 8.2 × 105 m/s in the li...

455 citations

Journal ArticleDOI
TL;DR: The data reported here support the idea that certain PTDs promote cellular uptake via endocytosis and require the expression of negatively charged glycosaminoglycans on the surface of the target cells, and support the view that PTD-mediated cellular uptake is energy-independent.

454 citations

Journal ArticleDOI
01 Jul 2008-Tellus B
TL;DR: In this article, the authors summarized the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites.
Abstract: The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.

454 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2238 moreInstitutions (159)
TL;DR: In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented.
Abstract: Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

454 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298