Institution
Philips
Company•Vantaa, Finland•
About: Philips is a(n) company organization based out in Vantaa, Finland. It is known for research contribution in the topic(s): Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publication(s) receiving 1882329 citation(s). The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, a series of monodisperse suspensions of the same chemical composition but of rather different particle sizes was used to study particle size dependent phenomena, such as Brownian motion, light scattering, sedimentation and electrophoresis of small particles.
Abstract: MANY properties of colloids and suspensions depend on the particle size. Series of monodisperse suspensions of the same chemical composition but of rather different particle sizes may be used to study particle size dependent phenomena, such as Brownian motion, light scattering, sedimentation and electrophoresis of small particles. We have used such series to demonstrate the increased tendency of metal suspensions to coagulate in the presence of electrolytes as the radius of the particles increases1.
7,162 citations
TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Abstract: Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix1. This has important consequences for electrical properties of these materials: charge transport is usually limited by the most difficult hopping processes and is therefore dominated by the disordered matrix, resulting in low charge-carrier mobilities2 (⩽10-5 cm2 V-1 s-1). Here we use thin-film, field-effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT. Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different orientations—parallel and normal to the substrate—the mobilities of which differ by more than a factor of 100, and can reach values as high as 0.1 cm2 V-1 s-1 (refs 3, 4). Optical spectroscopy of the field-induced charge, combined with the mobility anisotropy, reveals the two-dimensional interchain character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications of polymer transistors in logic circuits5 and active-matrix displays4,6.
4,150 citations
TL;DR: The band structure of Mn-based Heusler alloys of the crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method.
Abstract: The band structure of Mn-based Heusler alloys of the $C{1}_{b}$ crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method. Some of these magnetic compounds show unusual electronic properties. The majority-spin electrons are metallic, whereas the minority-spin electrons are semiconducting.
3,442 citations
TL;DR: In this article, the London-v.d. interaction between two spherical particles is computed as a function of the diameters and the distance separating them, and a table is calculated which enables numerical application of the formulae derived.
Abstract: Summary Frequently we experience the existance of adhesive forces between small particles. It seems natural to ascribe this adhesion for a large part to London-v.d. Waals forces. To obtain general information concerning their order of magnitude the London-v. d. Waals interaction between two spherical particles is computed as a function of the diameters and the distance separating them. A table is calculated which enables numerical application of the formulae derived. Besides approximations are added, which may be used when the distance between the particles is small. In a separate section it is investigated how the results must be modified, when both particles are immersed in a liquid. Here we are led to the important conclusion that even in that case London-v. d. Waals forces generally cause an attraction.
3,285 citations
Mayo Clinic1, University College London2, University of California, Los Angeles3, Arizona State University4, University of California, Davis5, University of California, San Diego6, Boston University7, University of California, San Francisco8, Siemens9, General Electric10, Philips11, Johns Hopkins University12, Stanford University13, University of Virginia14
TL;DR: The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials.
Abstract: Dementia, one of the most feared associates of increasing longevity, represents a pressing public health problem and major research priority. Alzheimer's disease (AD) is the most common form of dementia, affecting many millions around the world. There is currently no cure for AD, but large numbers of novel compounds are currently under development that have the potential to modify the course of the disease and slow its progression. There is a pressing need for imaging biomarkers to improve understanding of the disease and to assess the efficacy of these proposed treatments. Structural magnetic resonance imaging (MRI) has already been shown to be sensitive to presymptomatic disease (1-10) and has the potential to provide such a biomarker. For use in large-scale multicenter studies, however, standardized methods that produce stable results across scanners and over time are needed.
The Alzheimer's Disease Neuroimaging Initiative (ADNI) study is a longitudinal multisite observational study of elderly individuals with normal cognition, mild cognitive impairment (MCI), or AD (11,12). It is jointly funded by the National Institutes of Health (NIH) and industry via the Foundation for the NIH. The study will assess how well information (alone or in combination) obtained from MRI, (18F)-fludeoyglucose positron emission tomography (FDG PET), urine, serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical and neuropsychometric assessments, can measure disease progression in the three groups of elderly subjects mentioned above. At the 55 participating sites in North America, imaging, clinical, and biologic samples will be collected at multiple time points in 200 elderly cognitively normal, 400 MCI, and 200 AD subjects. All subjects will be scanned with 1.5 T MRI at each time point, and half of these will also be scanned with FDG PET. Subjects not assigned to the PET arm of the study will be eligible for 3 T MRI scanning. The goal is to acquire both 1.5 T and 3 T MRI studies at multiple time points in 25% of the subjects who do not undergo PET scanning [R2C1]. CSF collection at both baseline and 12 months is targeted for 50% of the subjects. Sampling varies by clinical group. Healthy elderly controls will be sampled at 0, 6, 12, 24, and 36 months. Subjects with MCI will be sampled at 0, 6, 12, 18, 24, and 36 months. AD subjects will be sampled at 0, 6, 12, and 24 months.
Major goals of the ADNI study are: to link all of these data at each time point and make this repository available to the general scientific community; to develop technical standards for imaging in longitudinal studies; to determine the optimum methods for acquiring and analyzing images; to validate imaging and biomarker data by correlating these with concurrent psychometric and clinical assessments; and to improve methods for clinical trials in MCI and AD. The ADNI study overall is divided into cores, with each core managing ADNI-related activities within its sphere of expertise: clinical, informatics, biostatistics, biomarkers, and imaging. The purpose of this report is to describe the MRI methods and decision-making process underlying the selection of the MRI protocol employed in the ADNI study.
3,099 citations
Authors
Showing all 68260 results
Name | H-index | Papers | Citations |
---|---|---|---|
Mark Raymond Adams | 147 | 1187 | 135038 |
Dario R. Alessi | 136 | 354 | 74753 |
Mohammad Khaja Nazeeruddin | 129 | 646 | 85630 |
Sanjay Kumar | 120 | 2052 | 82620 |
Mark W. Dewhirst | 116 | 797 | 57525 |
Carl G. Figdor | 116 | 566 | 52145 |
Mathias Fink | 116 | 900 | 51759 |
David B. Solit | 114 | 469 | 52340 |
Giulio Tononi | 114 | 511 | 58519 |
Jie Wu | 112 | 1537 | 56708 |
Claire M. Fraser | 108 | 352 | 76292 |
Michael F. Berger | 107 | 540 | 52426 |
Nikolaus Schultz | 106 | 297 | 120240 |
Rolf Müller | 104 | 905 | 50027 |
Warren J. Manning | 102 | 606 | 38781 |