scispace - formally typeset
Search or ask a question
Institution

Philips

CompanyVantaa, Finland
About: Philips is a company organization based out in Vantaa, Finland. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publications receiving 1882329 citations. The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.


Papers
More filters
Journal ArticleDOI
H. B. G. Casimir1
TL;DR: In this article, a short synopsis of Onsagcr' s theory of reciprqcal relauons in irreversible processes is given, where the theory is applied to a number of simple examples, including thermomolecular pressure difference and conduction of electricity.
Abstract: '-. Summary \" \" After a short synopsis of Onsagcr' s theory of reciprqcal relauons in . irreversible processes, the theory is applied to a.... number of simple examples, In the first place we consider the thermomolecular pressure difference; this example will also offer an opportunity of discussing the \"quasi-thermostatic\" methods. In the secondplace the conduction of heatis studied and it is shown that Onsagcr's' relation leads to ~ Oi L[i1;] = 0 rather thanto L[ih]' = 0: Finally we discuss the' con. duetion of electricity by first deriving a relation of symmetry for an arbitrary four-pole from whicha symmetry relation for thc conductivity tensor is then easily deduced. .J

941 citations

Book ChapterDOI
TL;DR: In this article, the authors describe the properties of Si-inversion layers in GaAs-AlGaAs Heterostructures and the Quantum Hall Effect in strong magnetic fields.
Abstract: I. Introduction (Preface, Nanostructures in Si Inversion Layers, Nanostructures in GaAs-AlGaAs Heterostructures, Basic Properties). II. Diffusive and Quasi-Ballistic Transport (Classical Size Effects, Weak Localization, Conductance Fluctuations, Aharonov-Bohm Effect, Electron-Electron Interactions, Quantum Size Effects, Periodic Potential). III. Ballistic Transport (Conduction as a Transmission Problem, Quantum Point Contacts, Coherent Electron Focusing, Collimation, Junction Scattering, Tunneling). IV. Adiabatic Transport (Edge Channels and the Quantum Hall Effect, Selective Population and Detection of Edge Channels, Fractional Quantum Hall Effect, Aharonov-Bohm Effect in Strong Magnetic Fields, Magnetically Induced Band Structure).

937 citations

Journal ArticleDOI
TL;DR: In this article, a semi-empirical model of alloy cohesion involving two material constants for each element is introduced by means of the physical ideas underlying the scheme and the resulting expressions for the heat of formation of binary alloys are presented and their applicability in various extreme situations is discussed.
Abstract: A semi-empirical model of alloy cohesion involving two material constants for each element is introduced by means of the physical ideas underlying the scheme The resulting expressions for the heat of formation of binary alloys are presented and their applicability in various extreme situations is discussed The model is shown to reproduce a vast amount of experimental information on the sign of heats of formation Detailed comparison with experiment for particular classes of alloys will be presented in the sequels to this paper

932 citations

Journal ArticleDOI
Andrew Gerald Stove1
01 Oct 1992
TL;DR: In this article, the effects of noise reflected back from the transmitter to the receiver and the application of moving target indication to FMCW radars are considered, as well as the strengths and weaknesses of the system and how the weaknesses can be mitigated.
Abstract: Frequency modulated continuous wave (FMCW) radar uses a very low probability of intercept waveform, which is also well suited to make good use of simple solid-state transmitters. FMCW is finding applications in such diverse fields as naval tactical navigation radars, smart ammunition sensors and automotive radars. The paper discusses some features of FMCW radar which are not dealt with in much detail in the generally available literature. In particular, it discusses the effects of noise reflected back from the transmitter to the receiver and the application of moving target indication to FMCW radars. Some of the strengths and weaknesses of FMCW radar are considered. The paper describes how the strengths are utilised in some systems and how the weaknesses can be mitigated. It also discusses a modern implementation of a reflected power canceller, which can be used to suppress the leakage between the transmitter and the receiver, a well known problem with continous wave radars.

931 citations

Journal ArticleDOI
08 Nov 2012-Nature
TL;DR: An optical method is reported that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer and can be generalized to other contrast mechanisms and geometries.
Abstract: Non-invasive optical imaging techniques, such as optical coherence tomography1, 2, 3, are essential diagnostic tools in many disciplines, from the life sciences to nanotechnology. However, present methods are not able to image through opaque layers that scatter all the incident light4, 5. Even a very thin layer of a scattering material can appear opaque and hide any objects behind it6. Although great progress has been made recently with methods such as ghost imaging7, 8 and wavefront shaping9, 10, 11, present procedures are still invasive because they require either a detector12 or a nonlinear material13 to be placed behind the scattering layer. Here we report an optical method that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer. We illuminate the object with laser light that has passed through the scattering layer. We scan the angle of incidence of the laser beam and detect the total fluorescence of the object from the front. From the detected signal, we obtain the image of the hidden object using an iterative algorithm14, 15. As a proof of concept, we retrieve a detailed image of a fluorescent object, comparable in size (50 micrometres) to a typical human cell, hidden 6 millimetres behind an opaque optical diffuser, and an image of a complex biological sample enclosed between two opaque screens. This approach to non-invasive imaging through strongly scattering media can be generalized to other contrast mechanisms and geometries

906 citations


Authors

Showing all 68268 results

NameH-indexPapersCitations
Mark Raymond Adams1471187135038
Dario R. Alessi13635474753
Mohammad Khaja Nazeeruddin12964685630
Sanjay Kumar120205282620
Mark W. Dewhirst11679757525
Carl G. Figdor11656652145
Mathias Fink11690051759
David B. Solit11446952340
Giulio Tononi11451158519
Jie Wu112153756708
Claire M. Fraser10835276292
Michael F. Berger10754052426
Nikolaus Schultz106297120240
Rolf Müller10490550027
Warren J. Manning10260638781
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Stanford University
320.3K papers, 21.8M citations

88% related

National University of Singapore
165.4K papers, 5.4M citations

88% related

IBM
253.9K papers, 7.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202239
2021898
20201,428
20191,665
20181,378