scispace - formally typeset
Search or ask a question
Institution

Philips

CompanyVantaa, Finland
About: Philips is a company organization based out in Vantaa, Finland. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publications receiving 1882329 citations. The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.


Papers
More filters
Journal ArticleDOI
Caifeng Shan1
TL;DR: This paper investigates gender recognition on real-life faces using the recently built database, the Labeled Faces in the Wild (LFW), and local Binary Patterns (LBP) is employed to describe faces, and Adaboost is used to select the discriminative LBP features.

359 citations

Journal ArticleDOI
12 Jan 2001-Science
TL;DR: Control of fluid motion in three-dimensional structures with thousands of microch channels is demonstrated via an electrocapillary pressure, originating from electrostatic control of the solid/fluid interfacial tension in the microchannels.
Abstract: We demonstrate control of fluid motion in three-dimensional structures with thousands of microchannels. Fluids are manipulated via an electrocapillary pressure, originating from electrostatic control of the solid/fluid interfacial tension in the microchannels. Reversible fluid displacement has been achieved for all channel orientations with respect to gravity. The velocities of several centimeters per second are nearly two orders of magnitude higher than the velocities demonstrated by other electrofluidic actuation principles.

359 citations

Journal ArticleDOI
K.H.J. Buschow1, P.G. van Engen1
TL;DR: In this paper, the lattice constants of these compounds were determined and the formation of the Heusler L 2 1 -type phase was compared with model predictions, and it was found that only a limited number of these combinations leads to the cubic L2 1 -Heusler-type compounds.

359 citations

Journal ArticleDOI
TL;DR: It is shown that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomere-binding proteins, including TRF1 and TRF2, in order to promote APB formation through SUMOylation of telomeres- binding proteins.
Abstract: Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.

358 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the latest and most advanced surface potential-based model jointly developed by The Pennsylvania State University and Philips, which includes model structure, mobility and velocity saturation description, further development and verification of symmetric linearization method, recent advances in the computational techniques for the surface potential, modeling of gate tunneling current, inclusion of the retrograde impurity profile, and noise sources.
Abstract: This paper describes the latest and most advanced surface-potential-based model jointly developed by The Pennsylvania State University and Philips. Specific topics include model structure, mobility and velocity saturation description, further development and verification of symmetric linearization method, recent advances in the computational techniques for the surface potential, modeling of gate tunneling current, inclusion of the retrograde impurity profile, and noise sources. The emphasis of this paper is on incorporating the recent advances in MOS device physics and modeling within the compact modeling context

358 citations


Authors

Showing all 68268 results

NameH-indexPapersCitations
Mark Raymond Adams1471187135038
Dario R. Alessi13635474753
Mohammad Khaja Nazeeruddin12964685630
Sanjay Kumar120205282620
Mark W. Dewhirst11679757525
Carl G. Figdor11656652145
Mathias Fink11690051759
David B. Solit11446952340
Giulio Tononi11451158519
Jie Wu112153756708
Claire M. Fraser10835276292
Michael F. Berger10754052426
Nikolaus Schultz106297120240
Rolf Müller10490550027
Warren J. Manning10260638781
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Stanford University
320.3K papers, 21.8M citations

88% related

National University of Singapore
165.4K papers, 5.4M citations

88% related

IBM
253.9K papers, 7.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202239
2021898
20201,428
20191,665
20181,378