Institution

# Pierre-and-Marie-Curie University

Education•Paris, France•

About: Pierre-and-Marie-Curie University is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Raman spectroscopy. The organization has 34448 authors who have published 56139 publications receiving 2392398 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

Lawrence Berkeley National Laboratory

^{1}, University of California, Berkeley^{2}, Instituto Superior Técnico^{3}, Pierre-and-Marie-Curie University^{4}, Stockholm University^{5}, European Southern Observatory^{6}, Collège de France^{7}, University of Cambridge^{8}, University of Barcelona^{9}, Yale University^{10}, Space Telescope Science Institute^{11}, European Space Agency^{12}, University of New South Wales^{13}TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.

Abstract: We report measurements of the mass density, Omega_M, and
cosmological-constant energy density, Omega_Lambda, of the universe based on
the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these SNe, at redshifts between 0.18
and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova
Survey, at redshifts below 0.1, to yield values for the cosmological
parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve
width-luminosity relation. The measurement yields a joint probability
distribution of the cosmological parameters that is approximated by the
relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of
interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we
find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04}
(identified systematics). The data are strongly inconsistent with a Lambda = 0
flat cosmology, the simplest inflationary universe model. An open, Lambda = 0
cosmology also does not fit the data well: the data indicate that the
cosmological constant is non-zero and positive, with a confidence of P(Lambda >
0) = 99%, including the identified systematic uncertainties. The best-fit age
of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h)
Gyr for a flat cosmology. The size of our sample allows us to perform a variety
of statistical tests to check for possible systematic errors and biases. We
find no significant differences in either the host reddening distribution or
Malmquist bias between the low-redshift Calan/Tololo sample and our
high-redshift sample. The conclusions are robust whether or not a
width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

••

TL;DR: This work proposes a heuristic method that is shown to outperform all other known community detection methods in terms of computation time and the quality of the communities detected is very good, as measured by the so-called modularity.

Abstract: We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection method in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2.6 million customers and by analyzing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad-hoc modular networks. .

13,519 citations

••

TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

••

TL;DR: In this paper, the authors proposed a simple method to extract the community structure of large networks based on modularity optimization, which is shown to outperform all other known community detection methods in terms of computation time.

Abstract: We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection methods in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2 million customers and by analysing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad hoc modular networks.

11,078 citations

••

Keith A. Olive

^{1}, Kaustubh Agashe^{2}, Claude Amsler^{3}, Mario Antonelli +222 more•Institutions (107)TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.

Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations

##### Authors

Showing all 34671 results

Name | H-index | Papers | Citations |
---|---|---|---|

Zhong Lin Wang | 245 | 2529 | 259003 |

Guido Kroemer | 236 | 1404 | 246571 |

Krzysztof Matyjaszewski | 169 | 1431 | 128585 |

J. E. Brau | 162 | 1949 | 157675 |

E. Hivon | 147 | 403 | 118440 |

Kazuhiko Hara | 141 | 1956 | 107697 |

Simon Prunet | 141 | 434 | 96314 |

H. J. McCracken | 140 | 579 | 71091 |

G. Calderini | 139 | 1734 | 102408 |

Stefano Giagu | 139 | 1651 | 101569 |

Jean-Paul Kneib | 138 | 805 | 89287 |

G. Marchiori | 137 | 1590 | 94277 |

J. Ocariz | 136 | 1562 | 95905 |

Jean-Marie Tarascon | 136 | 853 | 137673 |

Alexis Brice | 135 | 870 | 83466 |