scispace - formally typeset
Search or ask a question
Institution

Pierre-and-Marie-Curie University

EducationParis, France
About: Pierre-and-Marie-Curie University is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Raman spectroscopy. The organization has 34448 authors who have published 56139 publications receiving 2392398 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An elastic model that estimates the equivalent Young's modulus of a micropillar substrate is proposed, which gives comparable results for both experimental approaches and is proposed to compare the force measurements on micro-textured surfaces and continuous flexible gels.
Abstract: Increasing evidence suggests that mechanical cues inherent to the extracellular matrix may be as important as its chemical nature in regulating cell behavior. Here, the response of cells to the mechanical properties of the substrate is examined by culturing 3T3 fibroblastic cells and epithelial cells on surfaces composed of a dense array of flexible microfabricated pillars. We focus on the influence of substrate rigidity on the traction forces exerted by cells, and on cell adhesion and migration. We first measure these forces by monitoring the deflection of the pillars. Then, by varying their geometric parameters, we control the substrate stiffness over a large range from 1 to 200 nN μm−1. We show that the force–rigidity relationship exhibits a similar behavior for both cell types. Two distinct regimes are evidenced: first, a linear increase of the force with the rigidity and then a saturation plateau for the largest rigidities. We observe that the cell spreading area increases with increasing rigidity, as well as the size of focal adhesions. Substrates with an anisotropic rigidity allow us to determine that the migration paths of 3T3 cells are oriented in the stiffest direction in correlation with maximal traction forces. Finally, to compare the force measurements on micro-textured surfaces and continuous flexible gels, we propose an elastic model that estimates the equivalent Young's modulus of a micropillar substrate. This qualitative model gives comparable results for both experimental approaches.

380 citations

Journal ArticleDOI
TL;DR: The highest density of immunostaining was found in limbic areas (lateral septum, CA1 area of Ammon's horn and dentate gyrus in the hippocampus, and frontal and entorhinal cortices), in agreement with previous autoradiographic studies with selective radioligands showing the enrichment of these regions in serotonin1A receptor binding sites.
Abstract: Specific anti-rat 5-hydroxytryptamine1A (serotonin1A) receptor antibodies raised in a rabbit injected with a synthetic peptide corresponding to a highly selective portion of the third intracellular loop of the receptor protein (El Mestikawy et al. [1990] Neurosci. Lett. 118:189-192) were used for immunohistochemical mapping of serotonin1A receptors in the brain and spinal cord of adult rats. The highest density of immunostaining was found in limbic areas (lateral septum, CA1 area of Ammon's horn and dentate gyrus in the hippocampus, and frontal and entorhinal cortices), in the anterior raphe nuclei, and in the interpeduncular nucleus, in agreement with previous autoradiographic studies with selective radioligands showing the enrichment of these regions in serotonin1A receptor binding sites. Serotonin1A receptor-like immunoreactivity was also present, but at a moderate level, in the neocortex, in some thalamic and hypothalamic nuclei, in the nucleus of the solitary tract, in the dorsal tegmentum, in the nucleus of the spinal tract of the trigeminal nerve, and in the superficial layers of the dorsal horn in the spinal cord. In contrast, extrapyramidal areas, including the caudate putamen, the globus pallidus, and the substantia nigra as well as the cerebellum, exhibited very low to no immunostaining by antiserotonin1A receptor antibodies. At the cellular level, both the plasma membrane of neuronal perikarya and fine neuronal processes probably corresponding to dendritic fields were found to bind antiserotonin1A receptor antibodies. Regional differences were noted regarding these two types of immunostaining, because only dendrites bound antibodies within the hippocampus and the lateral septum, whereas both dendrites and neuronal cell bodies were immunoreactive in the medial septum, in the diagonal band of Broca, and in the dorsal and median raphe nuclei. Therefore, differential addressing of serotonin1A receptors could occur from one neuron to another. In general, the distribution and density of serotonin1A receptor-like immunoreactivity in the whole brain and in spinal cord were consistent with the mapping of serotonin1A receptor binding sites and serotonin1A receptor mRNA previously established by immunoautoradiographic and in situ hybridization procedures.

380 citations

Journal ArticleDOI
01 Jun 1985-Cell
TL;DR: It is shown that ORF encodes a protein active in the gene conversion that spreads the intron within populations of interbreeding strains and is reminiscent of the "transposase" encoded by mobile genetic elements and is discussed in relation to other intron functions.

379 citations

Journal ArticleDOI
01 Jan 2001-Lithos
TL;DR: The fluid inclusions preserved in high and ultra-high pressure rocks provide direct information on the compositions of fluid phases evolved during subduction zone metamorphism, and on fluid-rock interactions occurring in such deep environments as mentioned in this paper.

379 citations

Journal ArticleDOI
TL;DR: The discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD are reported, suggesting that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.
Abstract: The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.

379 citations


Authors

Showing all 34671 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Guido Kroemer2361404246571
Krzysztof Matyjaszewski1691431128585
J. E. Brau1621949157675
E. Hivon147403118440
Kazuhiko Hara1411956107697
Simon Prunet14143496314
H. J. McCracken14057971091
G. Calderini1391734102408
Stefano Giagu1391651101569
Jean-Paul Kneib13880589287
G. Marchiori137159094277
J. Ocariz136156295905
Jean-Marie Tarascon136853137673
Alexis Brice13587083466
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

98% related

University of Paris-Sud
52.7K papers, 2.1M citations

97% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

Université libre de Bruxelles
56.9K papers, 2M citations

94% related

École Normale Supérieure
99.4K papers, 3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202370
2022361
2021388
2020580
2019855