scispace - formally typeset
Search or ask a question
Institution

Pierre-and-Marie-Curie University

EducationParis, France
About: Pierre-and-Marie-Curie University is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Raman spectroscopy. The organization has 34448 authors who have published 56139 publications receiving 2392398 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It appeared that the xylem pericycle is more pluripotent than previously thought, and was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division, while the phloem pericycle did not display such developmental plasticity.
Abstract: We have established a detailed framework for the process of shoot regeneration from Arabidopsis root and hypocotyl explants grown in vitro. Using transgenic plant lines in which the GUS or GFP genes were fused to promoters of developmental genes (WUS, CLV1, CLV3, STM, CUC1, PLT1, RCH1, QC25), or to promoters of genes encoding indicators of the auxin response (DR5) or transport (PIN1), cytokinin (CK) response (ARR5) or synthesis (IPT5), or mitotic activity (CYCB1), we showed that regenerated shoots originated directly or indirectly from the pericycle cells adjacent to xylem poles. In addition, shoot regeneration appeared to be partly similar to the formation of lateral root meristems (LRMs). During pre-culture on a 2, 4-dichlorophenoxyacetic acid (2, 4-D)-rich callus-inducing medium (CIM), xylem pericycle reactivation established outgrowths that were not true calli but had many characteristics of LRMs. Transfer to a CK-rich shoot-inducing medium (SIM) resulted in early LRM-like primordia changing to shoot meristems. Direct origin of shoots from the xylem pericycle occurred upon direct culture on CK-containing media without prior growth on CIM. Thus, it appeared that the xylem pericycle is more pluripotent than previously thought. This pluripotency was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division. In contrast, the phloem pericycle did not display such developmental plasticity, and responded to CKs with only periclinal divisions. Such observations reinforce the view that the pericycle is an 'extended meristem' that comprises two types of cell populations. They also suggest that the founder cells for LRM initiation are not initially fully specified for this developmental pathway.

335 citations

Journal ArticleDOI
TL;DR: This work reports a systematic fall in the heating efficiency for nanomaterials associated with tumour cells, and correlated with the magnetic characterization of the samples, demonstrating a complete inhibition of the Brownian relaxation in cellular conditions.

334 citations

Journal ArticleDOI
TL;DR: mTor, acting mainly via mTORC1, controls dystrophin transcription in a raptor- and rictor-independent mechanism.
Abstract: Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent.

334 citations

Journal ArticleDOI
TL;DR: The topological analysis of the electron localization function (ELF) provides a convenient theoretical framework to characterize chemical bonds as mentioned in this paper, which can be applied to exact wave functions as well as to experimental electron densities.
Abstract: The topological analysis of the electron localization function (ELF) provides a convenient theoretical framework to characterize chemical bonds. This method does not rely on the particular approximations that are made in actual quantum chemical calculations of the electronic structure. In principle, it can be applied to exact wave functions as well as to experimental electron densities. Introduction of a control space, such as a set of reaction pathways, allows extension of the analysis to chemical reactions. The study of the bifurcations occurring during such processes is of particular interest for their classification and their qualitative description. This is achieved with the help of Rene Thom's catastrophe theory. The following examples are discussed: the ammonia inversion, the breaking of the ethane C−C bond, and the breaking of the dative bond in NH3BH3. The types of catastrophe and their unfolding have been determined for each of these processes. As by-products, nonempirical definitions of covale...

334 citations

Journal ArticleDOI
TL;DR: In an analysis of data from individual patients with PSC worldwide, significant variation in clinical course associated with age at diagnosis, sex, and ductal and IBD subtypes is found.

334 citations


Authors

Showing all 34671 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Guido Kroemer2361404246571
Krzysztof Matyjaszewski1691431128585
J. E. Brau1621949157675
E. Hivon147403118440
Kazuhiko Hara1411956107697
Simon Prunet14143496314
H. J. McCracken14057971091
G. Calderini1391734102408
Stefano Giagu1391651101569
Jean-Paul Kneib13880589287
G. Marchiori137159094277
J. Ocariz136156295905
Jean-Marie Tarascon136853137673
Alexis Brice13587083466
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

98% related

University of Paris-Sud
52.7K papers, 2.1M citations

97% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

Université libre de Bruxelles
56.9K papers, 2M citations

94% related

École Normale Supérieure
99.4K papers, 3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202370
2022361
2021388
2020580
2019855