scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Catalonia

EducationBarcelona, Spain
About: Polytechnic University of Catalonia is a education organization based out in Barcelona, Spain. It is known for research contribution in the topics: Finite element method & Population. The organization has 16006 authors who have published 45325 publications receiving 949306 citations. The organization is also known as: UPC - BarcelonaTECH & Technical University of Catalonia.


Papers
More filters
Journal ArticleDOI
TL;DR: This work chooses the training of feed-forward neural networks for pattern classification as a test case for a first ACO variant for continuous optimization, and proposes hybrid algorithm variants that incorporate short runs of classical gradient techniques such as backpropagation.
Abstract: Ant colony optimization (ACO) is an optimization technique that was inspired by the foraging behaviour of real ant colonies. Originally, the method was introduced for the application to discrete optimization problems. Recently we proposed a first ACO variant for continuous optimization. In this work we choose the training of feed-forward neural networks for pattern classification as a test case for this algorithm. In addition, we propose hybrid algorithm variants that incorporate short runs of classical gradient techniques such as backpropagation. For evaluating our algorithms we apply them to classification problems from the medical field, and compare the results to some basic algorithms from the literature. The results show, first, that the best of our algorithms are comparable to gradient-based algorithms for neural network training, and second, that our algorithms compare favorably with a basic genetic algorithm.

254 citations

Journal ArticleDOI
TL;DR: The IoUT is introduced and its main differences with respect to the Internet of Things (IoT) are outlined and the proposed IoUT architecture is described.

252 citations

Journal ArticleDOI
TL;DR: In this article, a combination of discrete element method (DEM) and finite element method for dynamic analysis of geomechanics problems is presented, which can employ spherical (or cylindrical in 2D) rigid elements and finite elements in the discretization of different parts of the system.

252 citations

Journal ArticleDOI
TL;DR: A layered F2C architecture is introduced, its benefits and strengths, as well as the arising open and research challenges, making the case for the real need for coordinated management of fog-to-cloud (F2C) computing systems.
Abstract: The recent advances in cloud services technology are fueling a plethora of information technology innovation, including networking, storage, and computing. Today, various flavors have evolved of IoT, cloud computing, and so-called fog computing, a concept referring to capabilities of edge devices and users’ clients to compute, store, and exchange data among each other and with the cloud. Although the rapid pace of this evolution was not easily foreseeable, today each piece of it facilitates and enables the deployment of what we commonly refer to as a smart scenario, including smart cities, smart transportation, and smart homes. As most current cloud, fog, and network services run simultaneously in each scenario, we observe that we are at the dawn of what may be the next big step in the cloud computing and networking evolution, whereby services might be executed at the network edge, both in parallel and in a coordinated fashion, as well as supported by the unstoppable technology evolution. As edge devices become richer in functionality and smarter, embedding capacities such as storage or processing, as well as new functionalities, such as decision making, data collection, forwarding, and sharing, a real need is emerging for coordinated management of fog-to-cloud (F2C) computing systems. This article introduces a layered F2C architecture, its benefits and strengths, as well as the arising open and research challenges, making the case for the real need for their coordinated management. Our architecture, the illustrative use case presented, and a comparative performance analysis, albeit conceptual, all clearly show the way forward toward a new IoT scenario with a set of existing and unforeseen services provided on highly distributed and dynamic compute, storage, and networking resources, bringing together heterogeneous and commodity edge devices, emerging fogs, as well as conventional clouds. Introduction: The Scenario

252 citations

Journal ArticleDOI
TL;DR: This work was supported by an EU Marie Curie Research Training Network (HPRN-CT-2002-00175) and by grants from the Ministerio de Educacion y Ciencia and the Generalitat de Catalunya.
Abstract: This work was supported by an EU Marie Curie Research Training Network (HPRN-CT-2002-00175) and by grants (to M.C.) from the Ministerio de Educacion y Ciencia and the Generalitat de Catalunya. M.J.H. is the Royal Society of Chemistry Sir Edward Frankland Fellow 2004-5. A.G.B. is the recipient of a fellowship from the Ministerio de Sanidad y Consumo

252 citations


Authors

Showing all 16211 results

NameH-indexPapersCitations
Frede Blaabjerg1472161112017
Carlos M. Duarte132117386672
Ian F. Akyildiz11761299653
Josep M. Guerrero110119760890
David S. Wishart10852376652
O. C. Zienkiewicz10745571204
Maciej Lewenstein10493147362
Jordi Rello10369435994
Anil Kumar99212464825
Surendra P. Shah9971032832
Liang Wang98171845600
Aharon Gedanken9686138974
María Vallet-Regí9571141641
Bonaventura Clotet9478439004
Roberto Elosua9048154019
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

University of Waterloo
93.9K papers, 2.9M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023129
2022379
20212,313
20202,429
20192,427