scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Milan

EducationMilan, Italy
About: Polytechnic University of Milan is a education organization based out in Milan, Italy. It is known for research contribution in the topics: Computer science & Finite element method. The organization has 18231 authors who have published 58416 publications receiving 1229711 citations. The organization is also known as: PoliMi & L-NESS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that planar perovskite solar cells using TiO2 are inherently limited due to conduction band misalignment and demonstrate, with a variety of characterization techniques, for the first time that SnO2 achieves a barrier-free energetic configuration, obtaining almost hysteresis-free power conversion efficiencies (PCEs).
Abstract: The simplification of perovskite solar cells (PSCs), by replacing the mesoporous electron selective layer (ESL) with a planar one, is advantageous for large-scale manufacturing. PSCs with a planar TiO2 ESL have been demonstrated, but these exhibit unstabilized power conversion efficiencies (PCEs). Herein we show that planar PSCs using TiO2 are inherently limited due to conduction band misalignment and demonstrate, with a variety of characterization techniques, for the first time that SnO2 achieves a barrier-free energetic configuration, obtaining almost hysteresis-free PCEs of over 18% with record high voltages of up to 1.19 V.

1,049 citations

Book
17 Aug 1991
TL;DR: This chapter discusses Conceptual Design, Logical Design, and Design Tools for Database Design, as well as Joint Data and Functional Analysis, and Improving the Quality of a Database Schema.
Abstract: I. CONCEPTUAL DATABASE DESIGN. 1. An Introduction to Database Design. 2. Data Modeling Concepts. 3. Methodologies for Conceptual Design. 4. View Design. 5. View Integration. 6. Improving the Quality of a Database Schema. 7. Schema Documentation and Maintenance. II. FUNCTIONAL ANALYSIS FOR DATABASE DESIGN. 1. Functional Analysis Using the Dataflow Model. 2. Joint Data and Functional Analysis. 3. Case Study. III. LOGICAL DESIGN AND DESIGN TOOLS. 1. High-Level Logical Design Using the Entity-Relationship Model. 2. Logical Design for the Relational Model. 3. Logical Design for the Network Model. 4. Logical Design for the Hierarchical Model. 5. Database Design Tools. Index. 0805302441T04062001

1,018 citations

Journal ArticleDOI
TL;DR: This work addresses the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab, and identifies information spreading from questionable sources, finding different volumes of misinformation in each platform.
Abstract: We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction number [Formula: see text] for each social media platform. Moreover, we identify information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors' amplification.

1,008 citations

Journal ArticleDOI
TL;DR: Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, it is concluded that verifiable evidence exists to support the planning of emergency measures.
Abstract: The spread of coronavirus disease 2019 (COVID-19) in Italy prompted drastic measures for transmission containment. We examine the effects of these interventions, based on modeling of the unfolding epidemic. We test modeling options of the spatially explicit type, suggested by the wave of infections spreading from the initial foci to the rest of Italy. We estimate parameters of a metacommunity Susceptible-Exposed-Infected-Recovered (SEIR)-like transmission model that includes a network of 107 provinces connected by mobility at high resolution, and the critical contribution of presymptomatic and asymptomatic transmission. We estimate a generalized reproduction number ([Formula: see text] = 3.60 [3.49 to 3.84]), the spectral radius of a suitable next-generation matrix that measures the potential spread in the absence of containment interventions. The model includes the implementation of progressive restrictions after the first case confirmed in Italy (February 21, 2020) and runs until March 25, 2020. We account for uncertainty in epidemiological reporting, and time dependence of human mobility matrices and awareness-dependent exposure probabilities. We draw scenarios of different containment measures and their impact. Results suggest that the sequence of restrictions posed to mobility and human-to-human interactions have reduced transmission by 45% (42 to 49%). Averted hospitalizations are measured by running scenarios obtained by selectively relaxing the imposed restrictions and total about 200,000 individuals (as of March 25, 2020). Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, we conclude that verifiable evidence exists to support the planning of emergency measures.

948 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: The WebML language and its accompanying design method are fully implemented in a pre-competitive Web design tool suite, called ToriiSoft, supporting advanced features like multi-device access, personalization, and evolution management.
Abstract: Designing and maintaining Web applications is one of the major challenges for the software industry of the year 2000. In this paper we present Web Modeling Language (WebML), a notation for specifying complex Web sites at the conceptual level. WebML enables the high-level description of a Web site under distinct orthogonal dimensions: its data content (structural model), the pages that compose it (composition model), the topology of links between pages (navigation model), the layout and graphic requirements for page rendering (presentation model), and the customization features for one-to-one content delivery (personalization model). All the concepts of WebML are associated with a graphic notation and a textual XML syntax. WebML specifications are independent of both the client-side language used for delivering the application to users, and of the server-side platform used to bind data to pages, but they can be effectively used to produce a site implementation in a specific technological setting. WebML guarantees a model-driven approach to Web site development, which is a key factor for defining a novel generation of CASE tools for the construction of complex sites, supporting advanced features like multi-device access, personalization, and evolution management. The WebML language and its accompanying design method are fully implemented in a pre-competitive Web design tool suite, called ToriiSoft.

929 citations


Authors

Showing all 18743 results

NameH-indexPapersCitations
Alex J. Barker132127384746
Pierluigi Zotto128119778259
Andrea C. Ferrari126636124533
Marco Dorigo10565791418
Marcello Giroletti10355841565
Luciano Gattinoni10361048055
Luca Benini101145347862
Alberto Sangiovanni-Vincentelli9993445201
Surendra P. Shah9971032832
X. Sunney Xie9822544104
Peter Nijkamp97240750826
Nicola Neri92112241986
Ursula Keller9293433229
A. Rizzi9165340038
Martin J. Blunt8948529225
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023302
2022813
20214,152
20204,301
20193,831
20183,767