scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Milan

EducationMilan, Italy
About: Polytechnic University of Milan is a education organization based out in Milan, Italy. It is known for research contribution in the topics: Finite element method & Population. The organization has 18231 authors who have published 58416 publications receiving 1229711 citations. The organization is also known as: PoliMi & L-NESS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a fast and robust iterative method for obtaining selfconsistent solutions to the coupled system of Schrodinger's and Poisson's equations is presented, where a simple expression describing the dependence of the quantum electron density on the electrostatic potential is derived.
Abstract: A fast and robust iterative method for obtaining self-consistent solutions to the coupled system of Schrodinger’s and Poisson’s equations is presented. Using quantum mechanical perturbation theory, a simple expression describing the dependence of the quantum electron density on the electrostatic potential is derived. This expression is then used to implement an iteration scheme, based on a predictor-corrector type approach, for the solution of the coupled system of differential equations. We find that this iteration approach simplifies the software implementation of the nonlinear problem, and provides excellent convergence speed and stability. We demonstrate the approach by presenting an example for the calculation of the two-dimensional bound electron states within the cross section of a GaAs-AlGaAs based quantum wire. For this example, the convergence is six times faster by applying our predictor-corrector approach compared to a corresponding underrelaxation algorithm.

284 citations

Journal ArticleDOI
01 Dec 2008
TL;DR: This article evaluates the progress in software technologies and methodologies that led to the service concept and SOA and discusses how the evolution of the requirements, and in particular business goals, influenced the progress towards highly dynamic self-adaptive systems.
Abstract: Future software systems will operate in a highly dynamic world. Systems will need to operate correctly despite of unespected changes in factors such as environmental conditions, user requirements, technology, legal regulations, and market opportunities. They will have to operate in a constantly evolving environment that includes people, content, electronic devices, and legacy systems. They will thus need the ability to continuously adapt themselves in an automated manner to react to those changes. To realize dynamic, self-adaptive systems, the service concept has emerged as a suitable abstraction mechanism. Together with the concept of the service-oriented architecture (SOA), this led to the development of technologies, standards, and methods to build service-based applications by flexibly aggregating individual services. This article discusses how those concepts came to be by taking two complementary viewpoints. On the one hand, it evaluates the progress in software technologies and methodologies that led to the service concept and SOA. On the other hand, it discusses how the evolution of the requirements, and in particular business goals, influenced the progress towards highly dynamic self-adaptive systems. Finally, based on a discussion of the current state of the art, this article points out the possible future evolution of the field.

283 citations

Journal ArticleDOI
TL;DR: A formalization of the fraud-detection problem is proposed that realistically describes the operating conditions of FDSs that everyday analyze massive streams of credit card transactions and a novel learning strategy is designed and assessed that effectively addresses class imbalance, concept drift, and verification latency.
Abstract: Detecting frauds in credit card transactions is perhaps one of the best testbeds for computational intelligence algorithms. In fact, this problem involves a number of relevant challenges, namely: concept drift (customers’ habits evolve and fraudsters change their strategies over time), class imbalance (genuine transactions far outnumber frauds), and verification latency (only a small set of transactions are timely checked by investigators). However, the vast majority of learning algorithms that have been proposed for fraud detection rely on assumptions that hardly hold in a real-world fraud-detection system (FDS). This lack of realism concerns two main aspects: 1) the way and timing with which supervised information is provided and 2) the measures used to assess fraud-detection performance. This paper has three major contributions. First, we propose, with the help of our industrial partner, a formalization of the fraud-detection problem that realistically describes the operating conditions of FDSs that everyday analyze massive streams of credit card transactions. We also illustrate the most appropriate performance measures to be used for fraud-detection purposes. Second, we design and assess a novel learning strategy that effectively addresses class imbalance, concept drift, and verification latency. Third, in our experiments, we demonstrate the impact of class unbalance and concept drift in a real-world data stream containing more than 75 million transactions, authorized over a time window of three years.

283 citations

Journal ArticleDOI
TL;DR: The problem of obtaining the skeleton of a digitized figure is reduced to an optimal policy problem and a hierarchy of methods of defining the skeleton is proposed; in the more complicated ones, thekeleton is relatively invariant under rotation.
Abstract: The problem of obtaining the skeleton of a digitized figure is reduced to an optimal policy problem. A hierarchy of methods of defining the skeleton is proposed; in the more complicated ones, the skeleton is relatively invariant under rotation. Two algorithms for computing the skeleton are defined, and the corresponding computer programs are compared. A criterion is proposed for determining the most significant skeleton points.

282 citations

Journal ArticleDOI
TL;DR: It is presented how chalcogen containing heteroaromatics, sulfides, disulfides, and selenium and tellurium analogues as well as some other molecular moieties can afford dependable ChB based supramolecular synthons and experimental evidence that similarities in the anisotropic distribution of the electrons in covalently bonded atoms translates in similarities in their recognition and self-assembly behavior.
Abstract: The distribution of the electron density around covalently bonded atoms is anisotropic, and this determines the presence, on atoms surface, of areas of higher and lower electron density where the electrostatic potential is frequently negative and positive, respectively. The ability of positive areas on atoms to form attractive interactions with electron rich sites became recently the subject of a flurry of papers. The halogen bond (HaB), the attractive interaction formed by halogens with nucleophiles, emerged as a quite common and dependable tool for controlling phenomena as diverse as the binding of small molecules to proteinaceous targets or the organization of molecular functional materials. The mindset developed in relation to the halogen bond prompted the interest in the tendency of elements of groups 13-16 of the periodic table to form analogous attractive interactions with nucleophiles. This Account addresses the chalcogen bond (ChB), the attractive interaction formed by group 16 elements with nucleophiles, by adopting a crystallographic point of view. Structures of organic derivatives are considered where chalcogen atoms form close contacts with nucleophiles in the geometry typical for chalcogen bonds. It is shown how sulfur, selenium, and tellurium can all form chalcogen bonds, the tendency to give rise to close contacts with nucleophiles increasing with the polarizability of the element. Also oxygen, when conveniently substituted, can form ChBs in crystalline solids. Chalcogen bonds can be strong enough to allow for the interaction to function as an effective and robust tool in crystal engineering. It is presented how chalcogen containing heteroaromatics, sulfides, disulfides, and selenium and tellurium analogues as well as some other molecular moieties can afford dependable chalcogen bond based supramolecular synthons. Particular attention is given to chalcogen containing azoles and their derivatives due to the relevance of these moieties in biosystems and molecular materials. It is shown how the interaction pattern around electrophilic chalcogen atoms frequently recalls the pattern around analogous halogen, pnictogen, and tetrel derivatives. For instance, directionalities of chalcogen bonds around sulfur and selenium in some thiazolium and selenazolium derivatives are similar to directionalities of halogen bonds around bromine and iodine in bromonium and iodonium compounds. This gives experimental evidence that similarities in the anisotropic distribution of the electron density in covalently bonded atoms translates in similarities in their recognition and self-assembly behavior. For instance, the analogies in interaction patterns of carbonitrile substituted elements of groups 17, 16, 15, and 14 will be presented. While the extensive experimental and theoretical data available in the literature prove that HaB and ChB form twin supramolecular synthons in the solid, more experimental information has to become available before such a statement can be safely extended to interactions wherein elements of groups 14 and 15 are the electrophiles. It will nevertheless be possible to develop some general heuristic principles for crystal engineering. Being based on the groups of the periodic table, these principles offer the advantage of being systematic.

282 citations


Authors

Showing all 18743 results

NameH-indexPapersCitations
Alex J. Barker132127384746
Pierluigi Zotto128119778259
Andrea C. Ferrari126636124533
Marco Dorigo10565791418
Marcello Giroletti10355841565
Luciano Gattinoni10361048055
Luca Benini101145347862
Alberto Sangiovanni-Vincentelli9993445201
Surendra P. Shah9971032832
X. Sunney Xie9822544104
Peter Nijkamp97240750826
Nicola Neri92112241986
Ursula Keller9293433229
A. Rizzi9165340038
Martin J. Blunt8948529225
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023302
2022811
20214,151
20204,301
20193,831
20183,767