Institution
Polytechnic University of Turin
Education•Turin, Piemonte, Italy•
About: Polytechnic University of Turin is a(n) education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topic(s): Finite element method & Nonlinear system. The organization has 11553 authors who have published 41395 publication(s) receiving 789320 citation(s). The organization is also known as: POLITO & Politecnico di Torino.
Topics: Finite element method, Nonlinear system, Population, Energy consumption, Boundary value problem
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure is reported, which is very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.
Abstract: Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.
2,284 citations
[...]
TL;DR: In this article, a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure is presented.
Abstract: Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.
2,132 citations
Book•
[...]
TL;DR: The goal of this paper is to present in a comprehensive fashion the theory underlying bit-interleaved coded modulation, to provide tools for evaluating its performance, and to give guidelines for its design.
Abstract: Zehavi (1992) showed that the performance of coded modulation over a Rayleigh fading channel can be improved by bit-wise interleaving the encoder output and by using an appropriate soft-decision metric as an input to a Viterbi decoder. The goal of this paper is to present in a comprehensive fashion the theory underlying bit-interleaved coded modulation, to provide tools for evaluating its performance, and to give guidelines for its design.
2,098 citations
[...]
TL;DR: This paper describes the statistical models of fading channels which are frequently used in the analysis and design of communication systems, and focuses on the information theory of fading channel, by emphasizing capacity as the most important performance measure.
Abstract: In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
1,968 citations
[...]
TL;DR: In this article, the status of worldwide research in the thermal conductivity of carbon nanotubes and their polymer nanocomposites is reviewed, as well as the relationship between thermal conductivities and the micro- and nano-structure of the composites.
Abstract: Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composites.
1,776 citations
Authors
Showing all 11553 results
Name | H-index | Papers | Citations |
---|---|---|---|
Rodney S. Ruoff | 164 | 666 | 194902 |
Silvia Bordiga | 107 | 498 | 41413 |
Sergio Ferrara | 105 | 726 | 44507 |
Enrico Rossi | 103 | 606 | 41255 |
Stefano Passerini | 102 | 771 | 39119 |
James Barber | 102 | 642 | 42397 |
Markus J. Buehler | 95 | 609 | 33054 |
Dario Farina | 94 | 832 | 32786 |
Gabriel G. Katul | 91 | 506 | 34088 |
M. De Laurentis | 84 | 275 | 54727 |
Giuseppe Caire | 82 | 825 | 40344 |
Christophe Fraser | 76 | 264 | 29250 |
Erasmo Carrera | 75 | 829 | 23981 |
Andrea Califano | 75 | 305 | 31348 |
Massimo Inguscio | 74 | 427 | 21507 |