scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Turin

EducationTurin, Piemonte, Italy
About: Polytechnic University of Turin is a education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topics: Finite element method & Nonlinear system. The organization has 11553 authors who have published 41395 publications receiving 789320 citations. The organization is also known as: POLITO & Politecnico di Torino.


Papers
More filters
Journal ArticleDOI
TL;DR: The history and trends of magnetic materials used in electrical machines and motors, as well as amorphous and nanocrystalline magnetic materials and soft magnetic composites, are presented.
Abstract: This paper gives an overview on the history and trends of magnetic materials used in electrical machines and motors. The presented materials include silicon–iron, nickel–iron, and cobalt–iron lamination steels, as well as amorphous and nanocrystalline magnetic materials and soft magnetic composites. Development trends and current usage of these selected materials are presented, giving an outlook on the new magnetic material research with regard to electrical machine applications.

210 citations

Book
01 Jan 2001
TL;DR: The aim of this work is to provide both an overview on algebraic lattice code designs for Rayleigh fading channels, as well as a tutorial introduction to algebraic number theory.
Abstract: Algebraic number theory is having an increasing impact in code design for many different coding applications, such as single antenna fading channels and more recently, MIMO systems. Extended work has been done on single antenna fading channels, and algebraic lattice codes have been proven to be an effective tool. The general framework has been settled in the last ten years and many explicit code constructions based on algebraic number theory are now available.The aim of this work is to provide both an overview on algebraic lattice code designs for Rayleigh fading channels, as well as a tutorial introduction to algebraic number theory. The basic facts of this mathematical field will be illustrated by many examples and by the use of a computer algebra freeware in order to make it more accessible to a large audience.

210 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the formulation of finite plate elements for an accurate description of stress and strain fields in multilayered, thick plates subjected to static loadings in the linear, elastic cases.
Abstract: This paper deals with the formulation of finite plate elements for an accurate description of stress and strain fields in multilayered, thick plates subjected to static loadings in the linear, elastic cases. The so-called zig-zag form and interlaminar continuity are addressed in the considered formulations. Two variational statements, the principle of virtual displacements (PVD) and the Reissner mixed variational theorem (RMVT) are employed to derive finite element matrices. Transverse stress assumptions are made in the framework of RMVT and the resulting finite elements describe a priori interlaminar continuous transverse shear and normal stresses. Both modellings which preserve the number of variables independent of the number of layers (equivalent single-layer models, ESLM) and layer-wise models (LWM) in which the same variables are independent in each layer, have been treated. The order N of the expansions assumed for both displacement and transverse stress fields in the plate thickness direction z as well as the number of element nodes Nn have been taken as free parameters of the considered formulations. By varying N, Nn, variable treatment (LW or ESL) as well as variational statements (PVD and RMVT), a large number of newly finite elements have been presented. Finite elements that are based on PVD and RMVT have been called classical and advanced, respectively. In order to write the matrices related to the considered plate elements in a concise form and to implement them in a computer code (see Part 2), extensive indicial notations have been set out. As a result, all the finite element matrices have been built from only five arrays that were called fundamental nuclei (four are related to RMVT applications and one to PVD cases). These arrays have 3×3 dimensions and are therefore constituted of only nine terms each. The different formulations are then obtained by expanding the indices that were introduced for the N-order expansion, for the number of nodes Nn and for the constitutive layers Nl. Compliances and/or stiffness are accumulated from layer to multilayered level according to the corresponding variable treatment (ESLM or LWM). The numerical evaluations and assessment for the presented plate elements have been provided in the companion paper (Part 2), where it has been concluded that it is convenient to refer to RMVT as a variational tool to formulate multilayered plate elements that are able to give a quasi-three-dimensional description of stress/strain fields in multilayered thick structures. Copyright © 2002 John Wiley & Sons, Ltd.

210 citations

Journal ArticleDOI
TL;DR: This review points out the great potential carried by hierarchical bioactive glass scaffolds that exhibit pore scales from the meso- to the macro-range, and their impact in the broad field of tissue engineering, including the emerging applications in contact with soft tissues and diagnostics.

210 citations

Journal ArticleDOI
TL;DR: The first directional point-contact spectroscopy experiments in high-quality MgB2 single crystals are presented, with a consequent, strong reduction of the error on the value of the gap amplitude as a function of temperature allowing a stricter test of the predictions of the two-band model for M gB2.
Abstract: We present the results of the first directional point-contact spectroscopy experiments in high-quality MgB2 single crystals. Because of the directionality of the current injection into the samples, the application of a magnetic field allowed us to separate the contributions of the sigma and pi bands to the total conductance of our point contacts. By using this technique, we were able to obtain the temperature dependency of each gap independent of the other. The consequent, strong reduction of the error on the value of the gap amplitude as a function of temperature allows a stricter test of the predictions of the two-band model for MgB2.

209 citations


Authors

Showing all 11854 results

NameH-indexPapersCitations
Rodney S. Ruoff164666194902
Silvia Bordiga10749841413
Sergio Ferrara10572644507
Enrico Rossi10360641255
Stefano Passerini10277139119
James Barber10264242397
Markus J. Buehler9560933054
Dario Farina9483232786
Gabriel G. Katul9150634088
M. De Laurentis8427554727
Giuseppe Caire8282540344
Christophe Fraser7626429250
Erasmo Carrera7582923981
Andrea Califano7530531348
Massimo Inguscio7442721507
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023210
2022487
20212,789
20202,969
20192,779
20182,509