scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Valencia

EducationValencia, Spain
About: Polytechnic University of Valencia is a education organization based out in Valencia, Spain. It is known for research contribution in the topics: Catalysis & Population. The organization has 16282 authors who have published 40162 publications receiving 850234 citations.


Papers
More filters
Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations

Journal ArticleDOI
TL;DR: Application to Total Synthesis 1699 6.1.
Abstract: A.L.-P. thanks CSIC for a contract under the JAE-doctor program. Financial support by PLE2009 project from MCIINN and Consolider-Ingenio 2010 (proyecto MULTICAT) are also acknowledged.

1,125 citations

Journal ArticleDOI
24 Jan 2008-Nature
TL;DR: Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.
Abstract: Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.

1,086 citations

Journal ArticleDOI
TL;DR: In this article, the potentiality of nanocrystalline, delaminated, or ultralarge pore catalysts and of zeolites formed by channels with different dimensions is outlined.

1,057 citations

Journal ArticleDOI
TL;DR: Magnusson expansion as discussed by the authors provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory (TEPT).

1,013 citations


Authors

Showing all 16503 results

NameH-indexPapersCitations
Avelino Corma134104989095
Bruce D. Hammock111140957401
Geoffrey A. Ozin10881147504
Wolfgang J. Parak10246943307
Hermenegildo García9779246585
María Vallet-Regí9571141641
Albert Ferrando8741936793
Rajendra Prasad8694529526
J.J. Garcia-Luna-Aceves8660225151
George W. Huber8428037964
Juan J. Calvete8145822646
Juan M. Feliu8054423147
Amparo Chiralt7829818378
Michael Tsapatsis7737520051
Josep Redon7748881395
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

93% related

University of Granada
59.2K papers, 1.4M citations

93% related

National Research Council
76K papers, 2.4M citations

92% related

Ghent University
111K papers, 3.7M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023130
2022331
20212,655
20202,861
20192,762