scispace - formally typeset
Search or ask a question

Showing papers by "Pompeu Fabra University published in 2014"


Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations


Journal ArticleDOI
14 Aug 2014-Cell
TL;DR: An integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types revealed a unified classification into 11 major subtypes, revealing several distinct cancer types found to converge into common subtypes.

1,259 citations


Journal ArticleDOI
Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt2, Susanne Nordenfelt1, Heng Li1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland2, Nadin Rohland1, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan13, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua2, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems43, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich1, David Reich2, Johannes Krause4, Johannes Krause3 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, University of Edinburgh13, Sultan Qaboos University14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
18 Sep 2014-Nature
TL;DR: It is shown that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians; and early European farmers, who were mainly of Near Eastern origin but also harboured west Europeanhunter-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

1,077 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify the effects of monetary policy on credit risk-taking with an exhaustive credit register of loan applications and contracts, and find that a lower overnight interest rate induces lowly capitalized banks to grant more loan applications to ex ante risky firms and to commit larger loan volumes with fewer collateral requirements to these firms, yet with a higher ex post likelihood of default.
Abstract: We identify the effects of monetary policy on credit risk-taking with an exhaustive credit register of loan applications and contracts. We separate the changes in the composition of the supply of credit from the concurrent changes in the volume of supply and quality, and the volume of demand. We employ a two-stage model that analyzes the granting of loan applications in the first stage and loan outcomes for the applications granted in the second stage, and that controls for both observed and unobserved, time-varying, firm and bank heterogeneity through time*firm and time*bank fixed effects. We find that a lower overnight interest rate induces lowly capitalized banks to grant more loan applications to ex ante risky firms and to commit larger loan volumes with fewer collateral requirements to these firms, yet with a higher ex post likelihood of default. A lower long-term interest rate and other relevant macroeconomic variables have no such effects.

965 citations


Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: It is reported that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities.
Abstract: Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16INK4a (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16INK4a silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16INK4a is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles. This study shows that ageing satellite cells undergo an irreversible transition from a quiescent to a pre-senescent state that results in the loss of muscle regeneration in sarcopenia; furthermore, increased expression of p16INK4a is identified as a common feature of senescent satellite cells. One of the properties crucial to the function of adult mammalian stem cells is the capacity to remain in a quiescent state for prolonged periods — and to respond when the need to regenerate arises. Loss of skeletal muscle mass and function are common features of advanced ageing in humans, associated with a loss of regenerative capacity of the skeletal muscle stem cells, known as satellite cells. Pura Munoz-Canoves and colleagues show that ageing satellite cells undergo an irreversible transition from quiescence to a pre-senescence state associated with increased expression of p16INK4a, a tumour-suppressor protein that has been identified as a marker for senescence. Repression of p16INK4a during adult life is shown to maintain satellite cells in a reversible quiescence state that allows muscle regeneration; p16INK4a is dysregulated in human geriatric satellite cells and the potential for muscle regeneration is lost.

771 citations


Journal ArticleDOI
TL;DR: The historical, economic, and political factors that link precarious employment to health and health equity are identified; concepts, models, instruments, and findings on precarious employment and health inequalities are reviewed; the strengths and weaknesses of this literature are summarized; and substantive and methodological challenges are highlighted.
Abstract: Employment precariousness is a social determinant that affects the health of workers, families, and communities. Its recent popularity has been spearheaded by three main developments: the surge in “flexible employment” and its associated erosion of workers' employment and working conditions since the mid-1970s; the growing interest in social determinants of health, including employment conditions; and the availability of new data and information systems. This article identifies the historical, economic, and political factors that link precarious employment to health and health equity; reviews concepts, models, instruments, and findings on precarious employment and health inequalities; summarizes the strengths and weaknesses of this literature; and highlights substantive and methodological challenges that need to be addressed. We identify two crucial future aims: to provide a compelling research program that expands our understanding of employment precariousness and to develop and evaluate policy programs ...

748 citations


Journal ArticleDOI
05 Jun 2014-Nature
TL;DR: The draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, are presented, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes.
Abstract: The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.

610 citations


Journal ArticleDOI
TL;DR: The best characterized pathway, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER).
Abstract: Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.

518 citations


Journal ArticleDOI
TL;DR: It is found that none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade, suggesting that a re-evaluation of past hypotheses regarding dog origins is necessary.
Abstract: To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.

504 citations


Journal ArticleDOI
13 Mar 2014-Cell
TL;DR: It is estimated that between one in two and one in five silent mutations in oncogenes have been selected, equating to ~6%- 8% of all selected single-nucleotide changes in these genes.

Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: A reference genome sequence for sugar beet is presented as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions and provides evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses.
Abstract: Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.

Posted Content
TL;DR: In this paper, the authors identify key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backwards compatibility. And indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities and unprecedented numbers of antennas. But unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt2, Susanne Nordenfelt1, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan13, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua2, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems43, Richard Villems38, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich2, David Reich1, Johannes Krause4, Johannes Krause3 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, University of Edinburgh13, Sultan Qaboos University14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

Journal ArticleDOI
TL;DR: This paper reviewed empirical work published since 2000 by researchers in the field of organizational psychology and management on workplace creativity and concluded that the nature of the actor-context interaction needs further theoretical advancement and refinement.
Abstract: Workplace creativity exhibited by individual employees and teams is a key driver of organizational innovation and success. After briefly touching upon issues related to the historical roots of research on workplace creativity, we focus on reviewing empirical work published since 2000 by researchers in the field of organizational psychology and management. We observe that although earlier research tended to take either an actor-centered or a context-centered approach, continuing to do so may have diminishing returns. To understand creativity in all its complexity and potential, an interactionist perspective that emphasizes actor–context interactive effects on creativity holds much promise. Moreover, after reviewing existing work taking an interactionist approach, we conclude that the nature of the actor–context interaction needs further theoretical advancement and refinement. Toward this end, we propose a typology that reveals a complex and intriguing set of actor–context interactions, including ones that ...

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Evidence is revealed that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification and a realistic two-dimensional simulation of digit patterning is developed, which shows that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments.
Abstract: During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation.

Journal ArticleDOI
16 Sep 2014-eLife
TL;DR: It is found that a large fraction of the lncRNAs expressed in cells from six different species is associated with ribosomes, indicating that they play an important role in de novo protein evolution.
Abstract: Deep transcriptome sequencing has revealed the existence of many transcripts that lack long or conserved open reading frames (ORFs) and which have been termed long non-coding RNAs (lncRNAs). The vast majority of lncRNAs are lineage-specific and do not yet have a known function. In this study, we test the hypothesis that they may act as a repository for the synthesis of new peptides. We find that a large fraction of the lncRNAs expressed in cells from six different species is associated with ribosomes. The patterns of ribosome protection are consistent with the translation of short peptides. lncRNAs show similar coding potential and sequence constraints than evolutionary young protein coding sequences, indicating that they play an important role in de novo protein evolution.

Journal ArticleDOI
Nathan O. Stitziel1, Hong-Hee Won2, Alanna C. Morrison3, Gina M. Peloso2, Ron Do2, Leslie A. Lange4, Pierre Fontanillas2, Namrata Gupta2, Stefano Duga, Anuj Goel5, Martin Farrall5, Danish Saleheen, Paola G. Ferrario6, Inke R. König6, Rosanna Asselta, Piera Angelica Merlini, Nicola Marziliano, Maria Francesca Notarangelo, Ursula M. Schick7, Paul L. Auer8, Themistocles L. Assimes9, Muredach P. Reilly10, Robert L. Wilensky10, Daniel J. Rader10, G. Kees Hovingh11, Thomas Meitinger12, Thorsten Kessler12, Adnan Kastrati12, Karl-Ludwig Laugwitz12, David S. Siscovick7, Jerome I. Rotter13, Stanley L. Hazen14, Russell P. Tracy15, Sharon Cresci1, John A. Spertus16, Rebecca D. Jackson17, Stephen M. Schwartz7, Pradeep Natarajan2, Jacy R Crosby3, Donna M. Muzny18, Christie M. Ballantyne18, Stephen S. Rich19, Christopher J. O'Donnell20, Gonçalo R. Abecasis21, Shamil R. Sunyaev2, Deborah A. Nickerson7, Julie E. Buring22, Paul M. Ridker22, Daniel I. Chasman22, Erin Austin23, Zi Ye23, Iftikhar J. Kullo23, Peter Weeke24, Christian M. Shaffer25, Lisa Bastarache25, Joshua C. Denny25, Dan M. Roden25, Colin N. A. Palmer26, Panos Deloukas27, Danyu Lin4, Zheng-Zheng Tang25, Jeanette Erdmann, Heribert Schunkert12, John Danesh28, Jaume Marrugat29, Roberto Elosua29, Diego Ardissino, Ruth McPherson30, Hugh Watkins5, Alexander P. Reiner7, James G. Wilson31, David Altshuler2, Richard A. Gibbs18, Eric S. Lander2, Eric Boerwinkle18, Stacey Gabriel2, Sekar Kathiresan2 
TL;DR: In this paper, the exons of the Niemann-Pick C1-like 1 (NPC1L1) protein were sequenced in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African or South Asian ancestry.
Abstract: Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug.We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease.With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%).Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).

Journal ArticleDOI
TL;DR: Improved honey bee genome assembly with a new gene annotation set and a number of genes similar to that of other insect genomes are reported, contrary to what was suggested in OGSv1.0.
Abstract: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.

Journal ArticleDOI
TL;DR: A consensus meeting was held in Vienna on September 8-9, 2013, to discuss diagnostic and therapeutic challenges surrounding development of diabetes mellitus after transplantation as mentioned in this paper, where 24 transplant nephrologists, surgeons, diabetologists and clinical scientists met with the aim to review previous guidelines in light of emerging clinical data and research.

Journal ArticleDOI
Abstract: Although agree–disagree (AD) rating scales suffer from acquiescence response bias, entail enhanced cognitive burden, and yield data of lower quality, these scales remain popular with researchers du...

Journal ArticleDOI
03 Dec 2014-Neuron
TL;DR: This work reviews methods and emerging results that exhibit remarkable accuracy in mapping and predicting both spontaneous and task-based healthy network dynamics and how whole-brain computational models can help generate and predict the dynamical interactions and consequences of brain networks over many timescales.

Journal ArticleDOI
TL;DR: This analysis serves as a preliminary step towards an interactive, dynamic and online distributed database system (NA2RE system) of the current spatial distribution of European amphibians and reptiles and highlights the need to add temporal and altitudinal data for all records to allow tracking potential species distribution changes.
Abstract: A precise knowledge of the spatial distribution of taxa is essential for decision-making processes in land management and biodiversity conservation, both for present and under future global change scenarios. This is a key base for several scientific disciplines (e.g. macro-ecology, biogeography, evolutionary biology, spatial planning, or environmental impact assessment) that rely on species distribution maps. An atlas summarizing the distribution of European amphibians and reptiles with 50 × 50 km resolution maps based on ca. 85 000 grid records was published by the Societas Europaea Herpetologica (SEH) in 1997. Since then, more detailed species distribution maps covering large parts of Europe became available, while taxonomic progress has led to a plethora of taxonomic changes including new species descriptions. To account for these progresses, we compiled information from different data sources: published in books and websites, ongoing national atlases, personal data kindly provided to the SEH, the 1997 European Atlas, and the Global Biodiversity Information Facility (GBIF). Databases were homogenised, deleting all information except species names and coordinates, projected to the same coordinate system (WGS84) and transformed into a 50 × 50 km grid. The newly compiled database comprises more than 384 000 grid and locality records distributed across 40 countries. We calculated species richness maps as well as maps of Corrected Weighted Endemism and defined species distribution types (i.e. groups of species with similar distribution patterns) by hierarchical cluster analysis using Jaccard’s index as association measure. Our analysis serves as a preliminary step towards an interactive, dynamic and online distributed database system (NA2RE system) of the current spatial distribution of European amphibians and reptiles. The NA2RE system will serve as well to monitor potential temporal changes in their distributions. Grid maps of all species are made available along with this paper as a tool for decision-making and conservation-related studies and actions. We also identify taxonomic and geographic gaps of knowledge that need to be filled, and we highlight the need to add temporal and altitudinal data for all records, to allow tracking potential species distribution changes as well as detailed modelling of the impacts of land use and climate change on European amphibians and reptiles.

Journal ArticleDOI
Lucia Carbone1, R. Alan Harris2, Sante Gnerre, Krishna R. Veeramah3, Krishna R. Veeramah4, Belen Lorente-Galdos5, John Huddleston6, John Huddleston7, Thomas J. Meyer1, Javier Herrero8, Christian Roos9, Bronwen Aken, Fabio Anaclerio10, Nicoletta Archidiacono10, Carl Baker7, Daniel Barrell, Mark A. Batzer11, Kathryn Beal, Antoine Blancher12, Craig L. Bohrson13, Markus Brameier9, Michael S. Campbell14, Oronzo Capozzi10, Claudio Casola15, Giorgia Chiatante10, Andrew Cree2, Annette Damert16, Pieter J. de Jong17, Laura Dumas18, Marcos Fernandez-Callejo5, Paul Flicek, Nina V. Fuchs19, Gut I20, Gut M20, Matthew W. Hahn21, Jessica Hernandez-Rodriguez5, LaDeana W. Hillier22, Robert Hubley23, Bianca Ianc16, Zsuzsanna Izsvák19, Nina G. Jablonski24, Laurel Johnstone3, Anis Karimpour-Fard18, Miriam K. Konkel11, Dennis Kostka25, Nathan H. Lazar1, Sandra L. Lee2, Lora Lewis2, Yue Liu2, Devin P. Locke22, Swapan Mallick26, Fernando L. Mendez27, Fernando L. Mendez3, Matthieu Muffato, Lynne V. Nazareth2, Kimberly A. Nevonen1, Majesta O'Bleness18, Cornelia Ochis16, Duncan T. Odom28, Katherine S. Pollard29, Javier Quilez5, David Reich26, Mariano Rocchi10, Gerald G. Schumann30, Stephen M. J. Searle, James M. Sikela18, Gabriella Skollar31, Arian F.A. Smit22, Kemal Sonmez1, Boudewijn F.H. Ten Hallers17, Elizabeth Terhune1, Gregg W.C. Thomas21, Brygg Ullmer11, Mario Ventura10, Jerilyn A. Walker11, Jeffrey D. Wall29, Lutz Walter9, Michelle C Ward32, Michelle C Ward28, Sarah J. Wheelan13, Christopher W. Whelan33, Christopher W. Whelan1, Simon D. M. White, Larry J. Wilhelm1, August E. Woerner3, Mark Yandell14, Baoli Zhu17, Michael F. Hammer3, Tomas Marques-Bonet20, Tomas Marques-Bonet5, Evan E. Eichler7, Evan E. Eichler6, Lucinda Fulton22, Catrina Fronick22, Donna M. Muzny2, Wesley C. Warren22, Kim C. Worley2, Jeffrey Rogers2, Richard K. Wilson22, Richard A. Gibbs2 
11 Sep 2014-Nature
TL;DR: The assembly and analysis of a northern white-cheeked gibbon genome is presented and the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site is described, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage.
Abstract: Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ~5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.

Journal ArticleDOI
TL;DR: An overview of the key findings of resting-state activity covering a range of neuroimaging modalities is provided and how to best define and analyze anatomical and functional brain networks is described and how unbalancing these networks may lead to problems with mental health is described.

Journal ArticleDOI
TL;DR: High-throughput sequencing assays on the transcriptome and epigenome reveal that, in general, differences dominate similarities between the two species, and indicate that there is considerable RNA expression diversity between humans and mice.
Abstract: Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species. These findings were further corroborated by associated epigenetic histone mark analyses. We also find that many noncoding transcripts are expressed at a low level and are not detectable at appreciable levels across individuals. Moreover, the majority lack obvious sequence homologs between species, even when we restrict our attention to those which are most highly reproducible across biological replicates. Overall, our results indicate that there is considerable RNA expression diversity between humans and mice, well beyond what was described previously, likely reflecting the fundamental physiological differences between these two organisms.

Journal ArticleDOI
12 Dec 2014-Science
TL;DR: An exceptionally slow rate of genome evolution within crocodilians at all levels is observed, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base repair machinery.
Abstract: ?? To provide context for the diversification of archosaurs—the group that includes crocodilians, dinosaurs, and birds—we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.

Journal ArticleDOI
TL;DR: This work examines how learning and using two languages affect language acquisition and processing as well as various aspects of cognition in monolingual and bilingual adults.
Abstract: The ability to speak two languages often marvels monolinguals, although bilinguals report no difficulties in achieving this feat. Here, we examine how learning and using two languages affect language acquisition and processing as well as various aspects of cognition. We do so by addressing three main questions. First, how do infants who are exposed to two languages acquire them without apparent difficulty? Second, how does language processing differ between monolingual and bilingual adults? Last, what are the collateral effects of bilingualism on the executive control system across the lifespan? Research in all three areas has not only provided some fascinating insights into bilingualism but also revealed new issues related to brain plasticity and language learning.

Journal ArticleDOI
01 Aug 2014-Thorax
TL;DR: Physical activity level in COPD is consistently associated with mortality and exacerbations, but there is poor evidence about determinants of physical activity, including the impact of treatment.
Abstract: Background The relationship between physical activity, disease severity, health status and prognosis in patients with COPD has not been systematically assessed. Our aim was to identify and summarise studies assessing associations between physical activity and its determinants and/or outcomes in patients with COPD and to develop a conceptual model for physical activity in COPD. Methods We conducted a systematic search of four databases (Medline, Embase, CINAHL and Psychinfo) prior to November 2012. Teams of two reviewers independently selected articles, extracted data and used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to assess quality of evidence. Results 86 studies were included: 59 were focused on determinants, 23 on outcomes and 4 on both. Hyperinflation, exercise capacity, dyspnoea, previous exacerbations, gas exchange, systemic inflammation, quality of life and self-efficacy were consistently related to physical activity, but often based on cross-sectional studies and low-quality evidence. Results from studies of pharmacological and non-pharmacological treatments were inconsistent and the quality of evidence was low to very low. As outcomes, COPD exacerbations and mortality were consistently associated with low levels of physical activity based on moderate quality evidence. Physical activity was associated with other outcomes such as dyspnoea, health-related quality of life, exercise capacity and FEV1 but based on cross-sectional studies and low to very low quality evidence. Conclusions Physical activity level in COPD is consistently associated with mortality and exacerbations, but there is poor evidence about determinants of physical activity, including the impact of treatment.

Journal ArticleDOI
Brian M. Wolpin1, Cosmeri Rizzato2, Peter Kraft1, Charles Kooperberg3, Gloria M. Petersen4, Zhaoming Wang5, Alan A. Arslan6, Laura Beane-Freeman5, Paige M. Bracci7, Julie E. Buring1, Federico Canzian2, Eric J. Duell, Steven Gallinger8, Graham G. Giles9, Gary E. Goodman3, Phyllis J. Goodman3, Eric J. Jacobs10, Aruna Kamineni11, Alison P. Klein12, Laurence N. Kolonel13, Matthew H. Kulke1, Donghui Li14, Núria Malats15, Sara H. Olson16, Harvey A. Risch17, Howard D. Sesso1, Howard D. Sesso18, Kala Visvanathan12, Emily White3, Emily White19, Wei Zheng20, Christian C. Abnet5, Demetrius Albanes5, Gabriella Andreotti5, Melissa A. Austin19, Richard Barfield1, Daniela Basso, Sonja I. Berndt5, Marie-Christine Boutron-Ruault21, Michelle Brotzman22, Markus W. Büchler23, H. Bas Bueno-de-Mesquita24, Peter Bugert23, Laurie Burdette5, Daniele Campa2, Neil E. Caporaso5, Gabriele Capurso25, Charles C. Chung5, Michelle Cotterchio8, Eithne Costello26, Joanne W. Elena5, Niccola Funel27, J. Michael Gaziano1, J. Michael Gaziano28, J. Michael Gaziano18, Nathalia Giese23, Edward Giovannucci1, Michael Goggins12, Megan J. Gorman1, Myron D. Gross29, Christopher A. Haiman30, Manal M. Hassan14, Kathy J. Helzlsouer31, Brian E. Henderson30, Elizabeth A. Holly7, Nan Hu5, David J. Hunter1, Federico Innocenti32, Mazda Jenab33, Rudolf Kaaks2, Timothy J. Key34, Kay-Tee Khaw35, Eric A. Klein36, Manolis Kogevinas, Vittorio Krogh, Juozas Kupcinskas37, Robert C. Kurtz16, Andrea Z. LaCroix3, Maria Teresa Landi5, Stefano Landi27, Loic Le Marchand13, Andrea Mambrini, Satu Männistö38, Roger L. Milne39, Yusuke Nakamura40, Ann L. Oberg4, Kouros Owzar41, Alpa V. Patel10, Petra H.M. Peeters24, Petra H.M. Peeters42, Ulrike Peters3, Raffaele Pezzilli43, Ada Piepoli44, Miquel Porta45, Miquel Porta46, Francisco X. Real45, Francisco X. Real15, Elio Riboli42, Nathaniel Rothman5, Aldo Scarpa, Xiao-Ou Shu20, Debra T. Silverman5, Pavel Soucek, Malin Sund47, Renata Talar-Wojnarowska48, Philip R. Taylor5, George Theodoropoulos, Mark D. Thornquist3, Anne Tjønneland, Geoffrey S. Tobias5, Dimitrios Trichopoulos, Pavel Vodicka49, Jean Wactawski-Wende18, Nicolas Wentzensen5, Chen Wu1, Herbert Yu13, Kai Yu5, Anne Zeleniuch-Jacquotte6, Robert N. Hoover5, Patricia Hartge5, Charles S. Fuchs1, Stephen J. Chanock5, Rachael S. Stolzenberg-Solomon5, Laufey T. Amundadottir5 
TL;DR: This study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies and an independent signal in exon 2 of TERT at the established region 5p15.
Abstract: We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 × 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 × 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 × 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 × 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 × 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 × 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies.