scispace - formally typeset
Search or ask a question
Institution

Pompeu Fabra University

EducationBarcelona, Spain
About: Pompeu Fabra University is a education organization based out in Barcelona, Spain. It is known for research contribution in the topics: Population & Gene. The organization has 8093 authors who have published 23570 publications receiving 858431 citations. The organization is also known as: Universitat Pompeu Fabra & UPF.


Papers
More filters
Journal ArticleDOI
TL;DR: This work generates primary data, creates bioinformatics tools and provides analysis to support the work of expert manual gene annotators and automated gene annotation pipelines to identify and characterise gene loci to the highest standard.
Abstract: The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.

2,095 citations

Journal ArticleDOI
Andrew G. Clark1, Michael B. Eisen2, Michael B. Eisen3, Douglas Smith  +426 moreInstitutions (70)
08 Nov 2007-Nature
TL;DR: These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.
Abstract: Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

2,057 citations

Journal ArticleDOI
Thomas J. Hudson1, Thomas J. Hudson2, Warwick Anderson3, Axel Aretz4  +270 moreInstitutions (92)
15 Apr 2010
TL;DR: Systematic studies of more than 25,000 cancer genomes will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Abstract: The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

2,041 citations

Book
01 Jan 1993
TL;DR: The aim of this work is to provide a Discussion of the Foundations of Correspondence Analysis and its Applications to Stability and Inference.
Abstract: Preface Scatterplots and Maps Profiles and the Profile Space Masses and Centroids Chi-Square Distance and Inertia Plotting Chi-Square Distances Reduction of Dimensionality Optimal Scaling Symmetry of Row and Column Analyses Two-Dimensional Maps Three More Examples Contributions to Inertia Supplementary Points Correspondence Analysis Biplots Transition and Regression Relationships Clustering Rows and Columns Multiway Tables Stacked Tables Multiple Correspondence Analysis Joint Correspondence Analysis Scaling Properties of MCA Subset Correspondence Analysis Analysis of Square Tables Data Recoding Canonical Correspondence Analysis Aspects of Stability and Inference Appendix A: Theory of Correspondence Analysis Appendix B: Computation of Correspondence Analysis Appendix C: Bibliography of Correspondence Analysis Appendix D: Glossary of Terms Appendix E: Epilogue Index

1,925 citations

Journal ArticleDOI
26 Sep 2013-Nature
TL;DR: Se sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences discover extremely widespread genetic variation affecting the regulation of most genes.
Abstract: Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project--the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.

1,892 citations


Authors

Showing all 8248 results

NameH-indexPapersCitations
Andrei Shleifer171514271880
Paul Elliott153773103839
Bert Brunekreef12480681938
Philippe Aghion12250773438
Anjana Rao11833761395
Jordi Sunyer11579857211
Kenneth J. Arrow113411111221
Xavier Estivill11067359568
Roderic Guigó108304106914
Mark J. Nieuwenhuijsen10764749080
Jordi Alonso10752364058
Alfonso Valencia10654255192
Luis Serrano10545242515
Vadim N. Gladyshev10249034148
Josep M. Antó10049338663
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

90% related

University of Pennsylvania
257.6K papers, 14.1M citations

90% related

Columbia University
224K papers, 12.8M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

University of Edinburgh
151.6K papers, 6.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022248
20211,903
20201,930
20191,763
20181,660