scispace - formally typeset
Search or ask a question
Institution

Port Said University

EducationPort Said, Egypt
About: Port Said University is a education organization based out in Port Said, Egypt. It is known for research contribution in the topics: Adsorption & Ligand. The organization has 1209 authors who have published 2541 publications receiving 22455 citations. The organization is also known as: PSU.
Topics: Adsorption, Ligand, Band gap, Thin film, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells are provided and how carcinogenesis could be developed via defective apoptotic pathways or their convergence is discussed.
Abstract: Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.

947 citations

Journal ArticleDOI
TL;DR: This study imagines what the antivirus-built environment looks like based on the lessons learned and the importance of designing a healthy and sustainable built environment to add additional security layers to overcome future virus-like attacks.

380 citations

Journal ArticleDOI
TL;DR: The novel Ag@MXene composite membrane with variable AgNP loadings achieved favorable rejection to organic foulants like bovine serum albumin (BSA) and methyl green (MG) in comparison to other reported membranes and makes Ag@ MXene layered nanosheets attractive candidates towards the development of nanofiltration membranes for water purification and biomedical applications.
Abstract: Low flux and fouling are critical issues in membrane based separation processes. Here we report a two-dimensional (2D) MXene (Ti3C2Tx) modified with Ag nanoparticles (Ag@MXene) as a promising alternative for ultrafast water purification membrane applications. The novel Ag@MXene composite membrane with variable AgNP loadings (between 0–35%) was produced by self-reduction of silver nitrate on the surface of MXene sheets in solution, where the MXene acted simultaneously as a membrane forming material and a reducing agent. The most suitable membrane, 21% Ag@MXene with 470 nm thickness and 2.1 nm average pore size, exhibited an outstanding water flux (∼420 L m−2 h−1 bar−1) compared to the pristine MXene membrane (∼118 L m−2 h−1 bar−1) under the same experimental conditions. The 21% Ag@MXene membrane demonstrated high rejection efficiency for organic molecules with excellent flux recovery. Moreover, the 21% Ag@MXene composite membrane demonstrated more than 99% E. coli growth inhibition, while the MXene membrane exhibited only ∼60% bacteria growth inhibition compared to the control hydrophilic polyvinylidene difluoride (PVDF) based membrane. Furthermore, the 21% Ag@MXene membrane achieved favorable rejection to organic foulants like bovine serum albumin (BSA) and methyl green (MG) in comparison to other reported membranes. This combination of controlled permeability and bactericidal properties makes Ag@MXene layered nanosheets attractive candidates towards the development of nanofiltration membranes for water purification and biomedical applications.

346 citations

Journal ArticleDOI
TL;DR: In this paper, three major technologies that are utilised for carbon capture are evaluated: pre-combustion, post combustion and oxyfuel combustion, and they compare carbon uptake technologies with techniques of carbon dioxide separation.
Abstract: Human activities have led to a massive increase in $$\hbox {CO}_{2}$$ emissions as a primary greenhouse gas that is contributing to climate change with higher than $$1\,^{\circ }\hbox {C}$$ global warming than that of the pre-industrial level. We evaluate the three major technologies that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We review the advances in carbon capture, storage and utilisation. We compare carbon uptake technologies with techniques of carbon dioxide separation. Monoethanolamine is the most common carbon sorbent; yet it requires a high regeneration energy of 3.5 GJ per tonne of $$\hbox {CO}_{2}$$ . Alternatively, recent advances in sorbent technology reveal novel solvents such as a modulated amine blend with lower regeneration energy of 2.17 GJ per tonne of $$\hbox {CO}_{2}$$ . Graphene-type materials show $$\hbox {CO}_{2}$$ adsorption capacity of 0.07 mol/g, which is 10 times higher than that of specific types of activated carbon, zeolites and metal–organic frameworks. $$\hbox {CO}_{2}$$ geosequestration provides an efficient and long-term strategy for storing the captured $$\hbox {CO}_{2}$$ in geological formations with a global storage capacity factor at a Gt-scale within operational timescales. Regarding the utilisation route, currently, the gross global utilisation of $$\hbox {CO}_{2}$$ is lower than 200 million tonnes per year, which is roughly negligible compared with the extent of global anthropogenic $$\hbox {CO}_{2}$$ emissions, which is higher than 32,000 million tonnes per year. Herein, we review different $$\hbox {CO}_{2}$$ utilisation methods such as direct routes, i.e. beverage carbonation, food packaging and oil recovery, chemical industries and fuels. Moreover, we investigated additional $$\hbox {CO}_{2}$$ utilisation for base-load power generation, seasonal energy storage, and district cooling and cryogenic direct air $$\hbox {CO}_{2}$$ capture using geothermal energy. Through bibliometric mapping, we identified the research gap in the literature within this field which requires future investigations, for instance, designing new and stable ionic liquids, pore size and selectivity of metal–organic frameworks and enhancing the adsorption capacity of novel solvents. Moreover, areas such as techno-economic evaluation of novel solvents, process design and dynamic simulation require further effort as well as research and development before pilot- and commercial-scale trials.

270 citations

Journal ArticleDOI
TL;DR: A detailed review of the current developments in the use of polymeric nanocomposite membranes for purifying water is presented in this article, where a specific focus has been placed on better understanding how nanomaterials can be used in a number of different ways, such as nanofiltration, micro-filtration, reverse osmosis and membrane distillation.

236 citations


Authors

Showing all 1238 results

Network Information
Related Institutions (5)
Cairo University
55.5K papers, 792.6K citations

90% related

Alexandria University
26.2K papers, 379.9K citations

90% related

Ain Shams University
34.4K papers, 444.5K citations

89% related

Mansoura University
23K papers, 344.7K citations

89% related

Quaid-i-Azam University
16.8K papers, 381.6K citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202246
2021511
2020416
2019302
2018258