scispace - formally typeset
Search or ask a question

Showing papers by "Potsdam Institute for Climate Impact Research published in 2018"


Journal ArticleDOI
TL;DR: The risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced is explored.
Abstract: We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.

1,685 citations


Journal ArticleDOI
10 Oct 2018-Nature
TL;DR: A global model finds that the environmental impacts of the food system could increase by 60–90% by 2050, and that dietary changes, improvements in technologies and management, and reductions in food loss and waste will all be needed to mitigate these impacts.
Abstract: The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50–90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.

1,521 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of negative emissions technologies (NETs) is presented, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration.
Abstract: The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO₂ yr⁻¹ for afforestation and reforestation, 0.5–5 GtCO₂ yr⁻¹ for BECCS, 0.5–2 GtCO₂ yr⁻¹ for biochar, 2–4 GtCO₂ yr⁻¹ for enhanced weathering, 0.5–5 GtCO₂ yr⁻¹ for DACCS, and up to 5 GtCO2 yr⁻¹ for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.

772 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe scenarios that limit end-of-century radiative forcing to 1.9 Wm−2, and consequently restrict median warming in the year 2100 to below 1.5 W m−2.
Abstract: The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.

733 citations


01 Jan 2018
TL;DR: In this paper, the authors present a survey of the work of the authors of this paper, including the following authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Is
Abstract: Contributing Authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Isaksson (Austria/Sweden), Daniel Huppmann (Austria), Gunnar Luderer (Germany), Anil Markandya (Spain/UK), David L. McCollum (USA/Austria), Malte Meinshausen (Australia/Germany), Richard Millar (UK), Alexander Popp (Germany), Pallav Purohit (Austria/India), Keywan Riahi (Austria), Aurélien Ribes (France), Harry Saunders (Canada/USA), Christina Schädel (USA/Switzerland), Chris Smith (UK), Pete Smith (UK), Evelina Trutnevyte (Switzerland/Lithuania), Yang Xiu (China), Wenji Zhou (Austria/China), Kirsten Zickfeld (Canada/Germany)

671 citations


Journal ArticleDOI
01 Apr 2018-Nature
TL;DR: A characteristic ‘fingerprint’ of sea-surface temperatures suggests that the Atlantic overturning circulation has slowed substantially since the mid-twentieth century, as predicted by climate models in response to increasing carbon dioxide emissions.
Abstract: The Atlantic meridional overturning circulation (AMOC)—a system of ocean currents in the North Atlantic—has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since the mid-twentieth century. This weakening is revealed by a characteristic spatial and seasonal sea-surface temperature ‘fingerprint’—consisting of a pattern of cooling in the subpolar Atlantic Ocean and warming in the Gulf Stream region—and is calibrated through an ensemble of model simulations from the CMIP5 project. We find this fingerprint both in a high-resolution climate model in response to increasing atmospheric carbon dioxide concentrations, and in the temperature trends observed since the late nineteenth century. The pattern can be explained by a slowdown in the AMOC and reduced northward heat transport, as well as an associated northward shift of the Gulf Stream. Comparisons with recent direct measurements from the RAPID project and several other studies provide a consistent depiction of record-low AMOC values in recent years. A characteristic ‘fingerprint’ of sea-surface temperatures suggests that the Atlantic overturning circulation has slowed substantially since the mid-twentieth century, as predicted by climate models in response to increasing carbon dioxide emissions.

561 citations


Journal ArticleDOI
TL;DR: It is shown that interactions between Arctic teleconnections and other remote and regional feedback processes could lead to more persistent hot-dry extremes in the mid-latitudes.
Abstract: Accelerated warming in the Arctic, as compared to the rest of the globe, might have profound impacts on mid-latitude weather. Most studies analyzing Arctic links to mid-latitude weather focused on winter, yet recent summers have seen strong reductions in sea-ice extent and snow cover, a weakened equator-to-pole thermal gradient and associated weakening of the mid-latitude circulation. We review the scientific evidence behind three leading hypotheses on the influence of Arctic changes on mid-latitude summer weather: Weakened storm tracks, shifted jet streams, and amplified quasi-stationary waves. We show that interactions between Arctic teleconnections and other remote and regional feedback processes could lead to more persistent hot-dry extremes in the mid-latitudes. The exact nature of these non-linear interactions is not well quantified but they provide potential high-impact risks for society.

474 citations


Journal ArticleDOI
TL;DR: An in-depth assessment of the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time are clarified.
Abstract: With the Paris Agreement's ambition of limiting climate change to well below 2 °C, negative emission technologies (NETs) have moved into the limelight of discussions in climate science and policy. Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools and performing an in-depth assessment of the quantitative and qualitative evidence therein. We clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time. There are six major findings arising from our assessment: first, keeping warming below 1.5 °C requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for the 2 °C warming limit. Second, accounting for economic and biophysical limits, we identify relevant potentials for all NETs except ocean fertilization. Third, any single NET is unlikely to sustainably achieve the large NETs deployment observed in many 1.5 °C and 2 °C mitigation scenarios. Yet, portfolios of multiple NETs, each deployed at modest scales, could be invaluable for reaching the climate goals. Fourth, a substantial gap exists between the upscaling and rapid diffusion of NETs implied in scenarios and progress in actual innovation and deployment. If NETs are required at the scales currently discussed, the resulting urgency of implementation is currently neither reflected in science nor policy. Fifth, NETs face severe barriers to implementation and are only weakly incentivized so far. Finally, we identify distinct ethical discourses relevant for NETs, but highlight the need to root them firmly in the available evidence in order to render such discussions relevant in practice.

473 citations


Journal ArticleDOI
01 Sep 2018
TL;DR: In this paper, a review of the use of nexus approaches to sustainable development challenges is presented, with a focus on food, water, and energy, and a systematic procedure and future directions.
Abstract: Many global challenges, though interconnected, have been addressed singly, at times reducing one problem while exacerbating others. Nexus approaches simultaneously examine interactions among multiple sectors. Recent quantitative studies have revealed that nexus approaches can uncover synergies and detect trade-offs among sectors. If well implemented, nexus approaches have the potential to reduce negative surprises and promote integrated planning, management and governance. However, application and implementation of nexus approaches are in their infancy. No studies have explicitly quantified the contributions of nexus approaches to progress toward meeting the Sustainable Development Goals. To further implement nexus approaches and realize their potential, we propose a systematic procedure and provide perspectives on future directions. These include expanding nexus frameworks that consider interactions among more sectors, across scales, between adjacent and distant places, and linkages with Sustainable Development Goals; incorporating overlooked drivers and regions; diversifying nexus toolboxes; and making these strategies central in policy-making and governance for integrated Sustainable Development Goal implementation. Sustainability challenges, such as feeding people with fewer resources, involve challenges at the nexus of multiple issues, such as food, water and energy. This Review explores such nexus approaches, surveying their use towards sustainable development challenges, discussing examples, and proposing a systematic procedure and future directions.

400 citations


Journal ArticleDOI
14 Aug 2018
TL;DR: In this article, sustainable intensification of agricultural systems offers synergistic opportunities for the co-production of agricultural and natural capital outcomes, but system redesign is essential to deliver optimum outcomes as ecological and economic conditions change.
Abstract: The sustainable intensification of agricultural systems offers synergistic opportunities for the co-production of agricultural and natural capital outcomes. Efficiency and substitution are steps towards sustainable intensification, but system redesign is essential to deliver optimum outcomes as ecological and economic conditions change. We show global progress towards sustainable intensification by farms and hectares, using seven sustainable intensification sub-types: integrated pest management, conservation agriculture, integrated crop and biodiversity, pasture and forage, trees, irrigation management and small or patch systems. From 47 sustainable intensification initiatives at scale (each >104 farms or hectares), we estimate 163 million farms (29% of all worldwide) have crossed a redesign threshold, practising forms of sustainable intensification on 453 Mha of agricultural land (9% of worldwide total). Key challenges include investment to integrate more forms of sustainable intensification in farming systems, creating agricultural knowledge economies and establishing policy measures to scale sustainable intensification further. We conclude that sustainable intensification may be approaching a tipping point where it could be transformative.

370 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-model study projects investment needs under countries' nationally determined contributions and in pathways consistent with achieving the 2°C and 1.5°C targets as well as certain SDGs, showing that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries' Nationally Determined Contributions.
Abstract: Low-carbon investments are necessary for driving the energy system transformation that is called for by both the Paris Agreement and Sustainable Development Goals. Improving understanding of the scale and nature of these investments under diverging technology and policy futures is therefore of great importance to decision makers. Here, using six global modelling frameworks, we show that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries’ Nationally Determined Contributions. Charting a course toward ‘well below 2 °C’ instead sees low-carbon investments overtaking fossil investments globally by around 2025 or before and growing thereafter. Pursuing the 1.5 °C target demands a marked upscaling in low-carbon capital beyond that of a 2 °C-consistent future. Actions consistent with an energy transformation would increase the costs of achieving the goals of energy access and food security, but reduce the costs of achieving air-quality goals. The scale and nature of energy investments under diverging technology and policy futures is of great importance to decision makers. Here, a multi-model study projects investment needs under countries’ nationally determined contributions and in pathways consistent with achieving the 2 °C and 1.5 °C targets as well as certain SDGs.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize findings regarding the optimal use of carbon revenues from both traditional economic analyses and studies in behavioural and political science that are focused on public acceptability, and compare real-world carbon pricing regimes with theoretical insights on distributional fairness, revenue salience, political trust and policy stability.
Abstract: The gap between actual carbon prices and those required to achieve ambitious climate change mitigation could be closed by enhancing the public acceptability of carbon pricing through appropriate use of the revenues raised. In this Perspective, we synthesize findings regarding the optimal use of carbon revenues from both traditional economic analyses and studies in behavioural and political science that are focused on public acceptability. We then compare real-world carbon pricing regimes with theoretical insights on distributional fairness, revenue salience, political trust and policy stability. We argue that traditional economic lessons on efficiency and equity are subsidiary to the primary challenge of garnering greater political acceptability and make recommendations for enhancing political support through appropriate revenue uses in different economic and political circumstances. Ambitious carbon pricing reform is needed to meet climate targets. This Perspective argues that effective revenue recycling schemes should prioritize behavioural considerations that are aimed at achieving greater political acceptance.

Journal ArticleDOI
TL;DR: In this article, a multi-model framework was used to estimate human losses, direct economic damage and subsequent indirect impacts (welfare losses) under a range of temperature (1.5°C, 2°C and 3°C warming) and socio-economic scenarios, assuming current vulnerability levels and in the absence of future adaptation.
Abstract: River floods are among some of the costliest natural disasters1, but their socio-economic impacts under contrasting warming levels remain little explored2. Here, using a multi-model framework, we estimate human losses, direct economic damage and subsequent indirect impacts (welfare losses) under a range of temperature (1.5 °C, 2 °C and 3 °C warming)3 and socio-economic scenarios, assuming current vulnerability levels and in the absence of future adaptation. With temperature increases of 1.5 °C, depending on the socio-economic scenario, it is found that human losses from flooding could rise by 70–83%, direct flood damage by 160–240%, with a relative welfare reduction between 0.23 and 0.29%. In a 2 °C world, by contrast, the death toll is 50% higher, direct economic damage doubles and welfare losses grow to 0.4%. Impacts are notably higher under 3 C warming, but at the same time, variability between ensemble members also increases, leading to greater uncertainty regarding flood impacts at higher warming levels. Flood impacts are further shown to have an uneven regional distribution, with the greatest losses observed in the Asian continent at all analysed warming levels. It is clear that increased adaptation and mitigation efforts—perhaps through infrastructural investment4—are needed to offset increasing risk of river floods in the future. River floods have severe socio-economic impacts. A multi-model framework reveals river-flood-related human losses may rise by up to 83%, 134% and 265% at 1.5 °C, 2 °C and 3 °C warming, respectively, with economic losses also projected to rise.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the determinants of these residual emissions, focusing on sector-level contributions, and show that even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850-1,150 GtCO2 during 2016-2100, despite carbon prices of US$130-420 per tCO2 by 2030.
Abstract: The Paris Agreement—which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C—has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850–1,150 GtCO2 during 2016–2100, despite carbon prices of US$130–420 per tCO2 by 2030. Thus, 640–950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160–330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.

Journal ArticleDOI
TL;DR: In this article, the authors conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger.
Abstract: Food insecurity can be directly exacerbated by climate change due to crop-production-related impacts of warmer and drier conditions that are expected in important agricultural regions1–3. However, efforts to mitigate climate change through comprehensive, economy-wide GHG emissions reductions may also negatively affect food security, due to indirect impacts on prices and supplies of key agricultural commodities4–6. Here we conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger. A robust finding is that by 2050, stringent climate mitigation policy, if implemented evenly across all sectors and regions, would have a greater negative impact on global hunger and food consumption than the direct impacts of climate change. The negative impacts would be most prevalent in vulnerable, low-income regions such as sub-Saharan Africa and South Asia, where food security problems are already acute.

01 Jan 2018
TL;DR: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty is presented in this paper.
Abstract: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

Journal ArticleDOI
TL;DR: In this paper, a review of up-to-date information on climate and hydrological variability, and on warming trends in Amazonia, with 2016 as the warmest year since at least 1950 (0.9 °C + 0.3°C).
Abstract: This paper shows recent progress in our understanding of climate variability and trends in the Amazon region, and how these interact with land use change. The review includes an overview of up-to-date information on climate and hydrological variability, and on warming trends in Amazonia, which reached 0.6-0.7 °C over the last 40 years, with 2016 as the warmest year since at least 1950 (0.9 °C +0.3°C). We focus on local and remote drivers of climate variability and change. We review the impacts of these drivers on the length of dry season, the role of the forest in climate and carbon cycles, the resilience of the forest, the risk of fires and biomass burning, and the potential “die back” of the Amazon forests if surpassing a “tipping point”. The role of the Amazon in moisture recycling and transport is also investigated, and a review of model development for climate change projections in the region is included. In sum, future sustainability of the Amazonian forests and its many services requires management strategies that consider the likelihood of multi-year droughts superimposed on a continued warming trend. Science has assembled enough knowledge to underline the global and regional importance of an intact Amazon region that can support policymaking and to keep this sensitive ecosystem functioning. This major challenge requires substantial resources and strategic cross-national planning, and a unique blend of expertise and capacities established in Amazon countries and from international collaboration. This also highlights the role of deforestation control in in support of policy for mitigation options as established in the Paris Agreement of 2015.

Journal ArticleDOI
TL;DR: In this paper, the authors assess the literature on innovation and upscaling for negative emissions technologies (NETs) using a systematic and reproducible literature coding procedure, and find that while there is a growing body of innovation literature on NETs, 59% of the articles are focused on the earliest stages of the innovation process, "research and development" (RD appealing to heterogeneous users, managing policy risk, as well as understanding and addressing public concerns are all crucial yet not well represented in the extant literature.
Abstract: We assess the literature on innovation and upscaling for negative emissions technologies (NETs) using a systematic and reproducible literature coding procedure. To structure our review, we employ the framework of sequential stages in the innovation process, with which we code each NETs article in innovation space. We find that while there is a growing body of innovation literature on NETs, 59% of the articles are focused on the earliest stages of the innovation process, 'research and development' (RD appealing to heterogeneous users, managing policy risk, as well as understanding and addressing public concerns are all crucial yet not well represented in the extant literature. Results from integrated assessment models show that while NETs play a key role in the second half of the 21st century for 1.5 °C and 2 °C scenarios, the major period of new NETs deployment is between 2030 and 2050. Given that the broader innovation literature consistently finds long time periods involved in scaling up and deploying novel technologies, there is an urgency to developing NETs that is largely unappreciated. This challenge is exacerbated by the thousands to millions of actors that potentially need to adopt these technologies for them to achieve planetary scale. This urgency is reflected neither in the Paris Agreement nor in most of the literature we review here. If NETs are to be deployed at the levels required to meet 1.5 °C and 2 °C targets, then important post-R&D issues will need to be addressed in the literature, including incentives for early deployment, niche markets, scale-up, demand, and—particularly if deployment is to be hastened—public acceptance.

Journal ArticleDOI
TL;DR: New, city-level estimates of CO2 emissions for 182 Chinese cities are presented and sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system.
Abstract: As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city-level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption-based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure.

Journal ArticleDOI
TL;DR: In this article, the authors compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of the mean, high, and low flows.
Abstract: Human activities have a profound influence on river discharge, hydrological extremes, and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of the mean, high, and low flows. The analysis is performed for 471 gauging stations across the globe and for the period 1971-2010. We find that the inclusion of HIP improves the performance of GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across GHMs, although the level of improvement and reasons for improvement vary greatly by GHM. The inclusion of HIP leads to a significant decrease in the bias of long-term mean monthly discharge in 36-73% of the studied catchments, and an improvement in modelled hydrological variability in 31-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in simulated high-flows, it can lead to either increases or decreases in low-flows. This is due to the relative importance of the timing of return flows and reservoir operations and their associated uncertainties. Even with the inclusion of HIP, we find that model performance still not optimal. This highlights the need for further research linking the human management and hydrological domains, especially in those areas with a dominant human impact. The large variation in performance between GHMs, regions, and performance indicators, calls for a careful selection of GHMs, model components, and evaluation metrics in future model applications.

Journal ArticleDOI
TL;DR: In this article, the authors explore the feasibility of NE via BECCS from dedicated plantations and potential trade-offs with planetary boundaries (PBs) for multiple socio-economic pathways.
Abstract: Under the Paris Agreement, 195 nations have committed to holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to strive to limit the increase to 1.5 °C (ref. 1 ). It is noted that this requires "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of the century" 1 . This either calls for zero greenhouse gas (GHG) emissions or a balance between positive and negative emissions (NE)2,3. Roadmaps and socio-economic scenarios compatible with a 2 °C or 1.5 °C goal depend upon NE via bioenergy with carbon capture and storage (BECCS) to balance remaining GHG emissions4–7. However, large-scale deployment of BECCS would imply significant impacts on many Earth system components besides atmospheric CO2 concentrations8,9. Here we explore the feasibility of NE via BECCS from dedicated plantations and potential trade-offs with planetary boundaries (PBs)10,11 for multiple socio-economic pathways. We show that while large-scale BECCS is intended to lower the pressure on the PB for climate change, it would most likely steer the Earth system closer to the PB for freshwater use and lead to further transgression of the PBs for land-system change, biosphere integrity and biogeochemical flows.

Journal ArticleDOI
TL;DR: In this article, the authors present a framework of assessing and reducing uncertainty and propose measures that could improve uncertainty communication, e.g. relying on ensembles and multi-model probabilistic approaches rather than projecting ranges of values.

Journal ArticleDOI
TL;DR: It is reported that drought stress will remain a key driver of yield losses in wheat and maize across Europe, and benefits from CO2 will be limited in low-yielding years.
Abstract: Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.

Journal ArticleDOI
TL;DR: Experimental results and security analysis show that the presented encryption algorithm has a good encryption effect and can resist various typical attacks.

Journal ArticleDOI
TL;DR: Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands could improve productivity, restore soil quality and reduce atmospheric CO2.
Abstract: The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to improve crop production, increase protection from pests and diseases, and restore soil fertility and structure. Managed croplands worldwide are already equipped for frequent rock dust additions to soils, making rapid adoption at scale feasible, and the potential benefits could generate financial incentives for widespread adoption in the agricultural sector. However, there are still obstacles to be surmounted. Audited field-scale assessments of the efficacy of CO2 capture are urgently required together with detailed environmental monitoring. A cost-effective way to meet the rock requirements for CO2 removal must be found, possibly involving the recycling of silicate waste materials. Finally, issues of public perception, trust and acceptance must also be addressed.

Journal ArticleDOI
14 Dec 2018
TL;DR: In this paper, the authors discuss a five-nodes definition of a nexus and propose perspectives that may lead to a reload of climate policy with buy-in from supply-chain managers and resource-rich developing countries.
Abstract: Debate around increasing demand for natural resources is often framed in terms of a ‘nexus’, which is perhaps at risk of becoming a buzz word. A nexus between what? Over what scales? And what are the consequences of such a nexus? This article analyses why readers should care about the nexus concept in relation to the United Nations Sustainable Development Goals (SDGs). We discuss a five-nodes definition and propose perspectives that may lead to a reload of climate policy with buy-in from supply-chain managers and resource-rich developing countries. Our research perspectives address modelling approaches and scenarios at the interface of bio-physical inputs and the human dimensions of security and governance.

Journal ArticleDOI
TL;DR: In this article, the authors diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss using a finite-element model, and show that highly localized iceshelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation.
Abstract: Floating ice shelves, which fringe most of Antarctica’s coastline, regulate ice flow into the Southern Ocean 1–3 . Their thinning 4–7 or disintegration 8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this ‘tele-buttressing’ enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner–Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters 10–12 , stressing Antarctica’s vulnerability to changes in its surrounding ocean.


Journal ArticleDOI
TL;DR: In this article, the authors calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail, and estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired.
Abstract: Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential for carbon removal, focusing on the grain size and weathering rates.
Abstract: The chemical weathering of rocks currently absorbs about 11 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential The crucial parameters defining this potential are the grain size and weathering rates The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US $ t−1 CO2 removed for dunite, but only at 200 US $ t−1 CO2 removed for basalt The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a−1 for dunite and 49 Gt CO2 a−1 for basalt The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes