scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is emphasised that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce and management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance.
Abstract: Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.

1,138 citations

Journal ArticleDOI
TL;DR: This study demonstrates that the object-based classifier is a significantly better approach than the classical per-pixel classifiers in identifying urban classes employing high resolution data.

1,108 citations

Journal ArticleDOI
TL;DR: In this article, a socio-psychological model based on Protection Motivation Theory (PMT) is developed, explaining private precautionary damage prevention by residents' perceptions of previous flood experience, risk of future floods, reliability of public flood protection, the efficacy and costs of self-protective behavior, their perceived ability to perform these actions, and nonprotective responses like wishful thinking.
Abstract: Self-protective behavior by residents of flood-prone urban areas can reduce monetary flood damage by 80%, and reduce the need for public risk management. But, research on the determinants of private households’ prevention of damage by natural hazards is rare, especially in Germany. To answer the question of why some people take precautionary action while others do not, a socio-psychological model based on Protection Motivation Theory (PMT) is developed, explaining private precautionary damage prevention by residents’ perceptions of previous flood experience, risk of future floods, reliability of public flood protection, the efficacy and costs of self-protective behavior, their perceived ability to perform these actions, and non-protective responses like wishful thinking. The validity of the proposed model is explored by means of representative quantitative telephone surveys and regression analyses, and compared with a socio-economic model (including residents’ age, gender, income, school degree and being owner or tenant). Participants were 157 residents of flood-prone homes in Cologne, Germany, a city that has traditionally been subject to minor and major flood events. Results of the study show the explanatory power of the socio-psychological model, with important implications for public risk communication efforts. To motivate residents in flood-prone areas to take their share in damage prevention, it is essential to communicate not only the risk of flooding and its potential consequences, but also the possibility, effectiveness and cost of private precautionary measures.

1,099 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the largest standardized model intercomparison for climate change impacts so far, finding that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

1,049 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: It is found that only one mode of Atlantic Ocean circulation is stable: a cold mode with deep water formation in the Atlantic Ocean south of Iceland; this provides an explanation why glacial climate is much more variable than Holocene climate.
Abstract: Abrupt changes in climate, termed Dansgaard-Oeschger and Heinrich events, have punctuated the last glacial period (approximately 100-10 kyr ago) but not the Holocene (the past 10 kyr). Here we use an intermediate-complexity climate model to investigate the stability of glacial climate, and we find that only one mode of Atlantic Ocean circulation is stable: a cold mode with deep water formation in the Atlantic Ocean south of Iceland. However, a 'warm' circulation mode similar to the present-day Atlantic Ocean is only marginally unstable, and temporary transitions to this warm mode can easily be triggered. This leads to abrupt warm events in the model which share many characteristics of the observed Dansgaard-Oeschger events. For a large freshwater input (such as a large release of icebergs), the model's deep water formation is temporarily switched off, causing no strong cooling in Greenland but warming in Antarctica, as is observed for Heinrich events. Our stability analysis provides an explanation why glacial climate is much more variable than Holocene climate.

982 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355