scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
24 Mar 2017-Science
TL;DR: This work proposes framing the decarbonization challenge in terms of a global decadal roadmap based on a simple heuristic—a “carbon law”— of halving gross anthropogenic carbon-dioxide emissions every decade to lead to net-zero emissions around mid-century.
Abstract: Although the Paris Agreement's goals (1) are aligned with science (2) and can, in principle, be technically and economically achieved (3), alarming inconsistencies remain between science-based targets and national commitments. Despite progress during the 2016 Marrakech climate negotiations, long-term goals can be trumped by political short-termism. Following the Agreement, which became international law earlier than expected, several countries published mid-century decarbonization strategies, with more due soon. Model-based decarbonization assessments (4) and scenarios often struggle to capture transformative change and the dynamics associated with it: disruption, innovation, and nonlinear change in human behavior. For example, in just 2 years, China's coal use swung from 3.7% growth in 2013 to a decline of 3.7% in 2015 (5). To harness these dynamics and to calibrate for short-term realpolitik, we propose framing the decarbonization challenge in terms of a global decadal roadmap based on a simple heuristic—a “carbon law”—of halving gross anthropogenic carbon-dioxide (CO2) emissions every decade. Complemented by immediately instigated, scalable carbon removal and efforts to ramp down land-use CO2 emissions, this can lead to net-zero emissions around mid-century, a path necessary to limit warming to well below 2°C.

805 citations

Journal ArticleDOI
26 Aug 2019
TL;DR: In this paper, the authors introduce six SDG Transformations as modular building-blocks of SDG achievement: education, gender and inequality; health, well-being and demography; energy decarbonization and sustainable industry; sustainable food, land, water and oceans; sustainable cities and communities; and digital revolution for sustainable development.
Abstract: The Sustainable Development Goals (SDGs) and the Paris Agreement on Climate Change call for deep transformations in every country that will require complementary actions by governments, civil society, science and business. Yet stakeholders lack a shared understanding of how the 17 SDGs can be operationalized. Drawing on earlier work by The World in 2050 initiative, we introduce six SDG Transformations as modular building-blocks of SDG achievement: (1) education, gender and inequality; (2) health, well-being and demography; (3) energy decarbonization and sustainable industry; (4) sustainable food, land, water and oceans; (5) sustainable cities and communities; and (6) digital revolution for sustainable development. Each Transformation identifies priority investments and regulatory challenges, calling for actions by well-defined parts of government working with business and civil society. Transformations may therefore be operationalized within the structures of government while respecting the strong interdependencies across the 17 SDGs. We also outline an action agenda for science to provide the knowledge required for designing, implementing and monitoring the SDG Transformations. The Sustainable Development Goals require profound national and societal changes. This Perspective introduces six Transformations as building blocks for achieving the SDGs and an agenda for science to provide the requisite knowledge.

801 citations

Journal ArticleDOI
TL;DR: The implications of projected climate change for freshwater resources and their management are discussed in this article, where the authors present an analysis of the potential impacts of climate change on freshwater resources in terms of their management.
Abstract: (2008). The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal: Vol. 53, No. 1, pp. 3-10.

782 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of negative emissions technologies (NETs) is presented, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration.
Abstract: The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO₂ yr⁻¹ for afforestation and reforestation, 0.5–5 GtCO₂ yr⁻¹ for BECCS, 0.5–2 GtCO₂ yr⁻¹ for biochar, 2–4 GtCO₂ yr⁻¹ for enhanced weathering, 0.5–5 GtCO₂ yr⁻¹ for DACCS, and up to 5 GtCO2 yr⁻¹ for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.

772 citations

Journal ArticleDOI
TL;DR: A new analysis shows that global warming could be limited to 1.5 °C by 2100, but that the window for achieving this is small and rapidly closing as mentioned in this paper, but this analysis does not consider the effects of human activities.
Abstract: A new analysis shows that global warming could be limited to 1.5 °C by 2100, but that the window for achieving this is small and rapidly closing.

757 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355