scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: reflecting on experience from other modeling communities, an evaluation framework for IAM of global climate change is developed that builds on a systematic and transparent step-by-step demonstration of a model's usefulness testing the plausibility of its behavior.
Abstract: Integrated Assessment Models of global climate change (IAMs) are an established tool to study interlinkages between the human and the natural system. Insights from these complex models are widely used to advise policy-makers and to inform the general public. But up to now there has been little understanding of how these models can be evaluated and community-wide standards are missing. To answer this urgent question is a challenge because the systems are open and their future behavior is fundamentally unknown. In this paper, we discuss ways to overcome these problems. Reflecting on experience from other modeling communities, we develop an evaluation framework for IAM of global climate change. It builds on a systematic and transparent step-by-step demonstration of a model's usefulness testing the plausibility of its behavior. Steps in the evaluation hierarchy are: setting up an evaluation framework, evaluation of the conceptual model, code verification and documentation, model evaluation, uncertainty and sensitivity analysis, documentation of the evaluation process, and communication with stakeholders. An important element in evaluating IAM of global climate change is the use of stylized behavior patterns derived from historical observation. The discussion of two examples is offered in this paper.

108 citations

Journal ArticleDOI
TL;DR: This paper considers the visibility graph approach, which has been found useful as an alternative tool for describing the fractal properties of a time series, and the interpretation of various graph-theoretical measures in the context of visibility graphs.
Abstract: Recently, complex network approaches to time series analysis have been developed and successfully applied to geophysical records In this paper, the visibility graph approach is re-considered, which has been found useful as an alternative tool for describing the fractal properties of a time series The interpretation of various graph-theoretical measures in the context of visibility graphs, their mutual interdependence, and their sensitivity in the presence of missing values and uncertainties (posing typical challenges in geophysical time series analysis) are thoroughly discussed The obtained results are illustrated for some exemplary records from different fields of geosciences

108 citations

Journal ArticleDOI
TL;DR: In this article, the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Central Asia were synthesized and analyzed. And the authors concluded that Central Asia will be severely affected by climate change even if the global mean temperature increase is limited to 2°C above pre-industrial levels, due to the potential for impacts to occur simultaneously and compound one another as well as interactions with wider development challenges, while risks will be strongly amplified if this threshold is crossed.
Abstract: This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Central Asia. Projections show mean temperatures increasing by up to 6.5 °C compared to pre-industrial by the end of this century across the region. Associated physical impacts include altered precipitation regimes, more frequent heat extremes and increasing aridity. Increasing rates of glacial and snow melt could lead to greater river runoff, but also to greater seasonality of runoff in the short term and to decreasing water availability in the medium term to long term. These changes have negative implications for the water availability in the region and for conflicting water demands between agriculture and hydropower. Climate change could mostly decrease crop yields, challenging food security, but in more northern regions there could also be positive effects. Studies on climate change impacts on energy systems are scarce and yield conflicting results, but the more regional study shows decreasing prospects for hydropower. The health of the population is already sensitive to heat extremes and is projected to be exposed to more frequent and prolonged heat waves in the future, among other potential health impacts. While the evidence for a link between climate and migration is weak, the rural-to-urban migration can be especially expected to intensify. The paper concludes that Central Asia will be severely affected by climate change even if the global mean temperature increase is limited to 2 °C above pre-industrial levels, due to the potential for impacts to occur simultaneously and compound one another as well as interactions with wider development challenges, while risks will be strongly amplified if this threshold is crossed.

108 citations

Journal ArticleDOI
TL;DR: In central Argentina, the Chinese tree glossy privet (Ligustrum lucidum) is an aggressive invasive speciesreplacing native forests, forming dense stands, and is thus a major conservation concern as discussed by the authors.

107 citations

Journal ArticleDOI
TL;DR: In this article, the potential effect on surface water pH of emissions of SOX and NOX from global ship routes is assessed and the results indicate that regional pH reductions of the same order of magnitude as the CO2-driven acidification can occur in heavily trafficked waters.
Abstract: The potential effect on surface water pH of emissions of SOX and NOX from global ship routes is assessed. The results indicate that regional pH reductions of the same order of magnitude as the CO2-driven acidification can occur in heavily trafficked waters. These findings have important consequences for ocean chemistry, since the sulfuric and nitric acids formed are strong acids in contrast to the weak carbonic acid formed by dissolution of CO2. Our results also provide background for discussion of expanded controls to mitigate acidification due to these shipping emissions.

107 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355