scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that under present–day conditions of the Earth's orbital parameters and sea–surface temperatures, two stable equilibria of vegetation patterns are possible: one corresponding to present-day sparse vegetation in the Sahel, the second solution yielding savannah which extends far into the south–western part of the Sahara.
Abstract: By coupling an atmospheric general circulation model asynchronously with an equilibrium vegetation model, manifold equilibrium solutions of the atmosphere–biosphere system have been explored. It is found that under present–day conditions of the Earth's orbital parameters and sea–surface temperatures, two stable equilibria of vegetation patterns are possible: one corresponding to present–day sparse vegetation in the Sahel, the second solution yielding savannah which extends far into the south–western part of the Sahara. A similar picture is obtained for conditions during the last glacial maximum (21 000 years before present (BP)). For the mid–Holocene (6000 years BP), however, the model finds only one solution: the green Sahara. We suggest that this intransitive behaviour of the atmosphere–biosphere is related to a westward shift of the Hadley–Walker circulation. A conceptual model of atmosphere–vegetation dynamics is used to interpret the bifurcation as well as its change in terms of stability theory.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the uncertainty of future sea-level change from Antarctica is estimated by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response.
Abstract: . The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

98 citations

Journal ArticleDOI
TL;DR: Modified CCS is proposed, which uses two encryption mechanisms, confusion and mask, and performs a much better encryption quality, and can save vast storage space by only storing the matrix generation parameters.
Abstract: Applications of wireless body area networks (WBANs) are extended from remote health care to military, sports, disaster relief, etc. With the network scale expanding, nodes increasing, and links complicated, a WBAN evolves to a body-to-body network. Along with the development, energy saving and data security problems are highlighted. In this paper, chaotic compressive sensing (CCS) is proposed to solve these two crucial problems, simultaneously. Compared with the traditional compressive sensing, CCS can save vast storage space by only storing the matrix generation parameters. Additionally, the sensitivity of chaos can improve the security of data transmission. Aimed at image transmission, modified CCS is proposed, which uses two encryption mechanisms, confusion and mask, and performs a much better encryption quality. Simulation is conducted to verify the feasibility and effectiveness of the proposed methods. The results show that the energy efficiency and security are strongly improved, while the storage space is saved. And the secret key is extremely sensitive, ${\text{10}^{ - \text{15}}}$ perturbation of the secret key could lead to a total different decoding, the relative error is larger than ${100\%}$ . Particularly for image encryption, the performance of the modified method is excellent. The adjacent pixel correlation is smaller than 0.04 in different directions including horizontal, vertical, and diagonal; the entropy of the cipher image with a 256-level gray value is larger than 7.98.

98 citations

Journal ArticleDOI
TL;DR: This work evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets, and under the assumption of no changes in demographic distribution and vulnerability, to suggest that limiting warming below 2 °C could prevent large increases in temperature- related mortality in most regions worldwide.
Abstract: The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to “hold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C”. The 1.5 °C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 °C) and more extreme GMT increases (3 and 4 °C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 °C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 °C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.

98 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the added value of an integrated analytical assessment approach to evaluate the interdependencies and interactions between climate, energy, water and land-use systems (CLEWS) from an energy sector perspective.

98 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355