scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The watershed model SWIM as discussed by the authors integrates hydrology, vegetation, erosion and nitrogen dynamics at the watershed scale, which can be parametrized using regionally available information using GIS-based tools.

446 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used integrated assessment (IA) focus groups, in which groups of randomly selected individuals in Switzerland looked at models of possible consequences of climate change and questioned specialists as to their accuracy and meaning, revealed a rich assembly of reactions.
Abstract: Various studies of public opinion regarding the causes and consequences of climate change reveal both a deep reservoir of concern, yet also a muddle over causes, consequences and appropriate policy measures for mitigation. The technique adopted here, namely integrated assessment (IA) focus groups, in which groups of randomly selected individuals in Switzerland looked at models of possible consequences of climate change and questioned specialists as to their accuracy and meaning, revealed a rich assembly of reactions. Respondents were alarmed about the consequences of high-energy futures, and molli"ed by images of low-energy futures. Yet they also erected a series of psychological barriers to justify why they should not act either individually or through collective institutions to mitigate climate change. From the viewpoint of changing their lifestyles of material comfort and high-energy dependence, they regarded the consequences of possible behavioural shift arising from the need to meet mitigation measures as more daunting. To overcome the dissonance created in their minds they created a number of socio-psychological denial mechanisms. Such mechanisms heightened the costs of shifting away from comfortable lifestyles, set blame on the inaction of others, including governments, and emphasised doubts regarding the immediacy of personal action when the e!ects of climate change seemed uncertain and far away. These "ndings suggest that more attention needs to be given to the social and psychological motivations as to why individuals erect barriers to their personal commitment to climate change mitigation, even when professing anxiety over climate futures. Prolonged and progressive packages of information tailored to cultural models or organised belief patterns, coupled to greater community based policy incentives may help to widen the basis of personal and moral responsibility. 2001 Elsevier Science Ltd. All rights reserved.

444 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided the greenhouse gas concentrations for these SSP scenarios, using the reduced-complexity climate-carbon-cycle model MAGICC7.0, and extended historical, observationally based concentration data with SSP trajectory projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution.
Abstract: . Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non- CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound ( ∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a “hockey-stick” upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘ C warming on the other.

444 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that climate change can directly affect human health by varying exposure to non-optimal outdoor temperature, however, evidence on this direct impact at a global scale is limited.

436 citations

Journal ArticleDOI
09 Nov 2012-Science
TL;DR: A precisely dated subannual climate record for the past 2000 years from Yok Balum Cave, Belize is presented and it is proposed that anomalously high rainfall favored unprecedented population expansion and the proliferation of political centers between 440 and 660 C.E.
Abstract: The role of climate change in the development and demise of Classic Maya civilization (300 to 1000 C.E.) remains controversial because of the absence of well-dated climate and archaeological sequences. We present a precisely dated subannual climate record for the past 2000 years from Yok Balum Cave, Belize. From comparison of this record with historical events compiled from well-dated stone monuments, we propose that anomalously high rainfall favored unprecedented population expansion and the proliferation of political centers between 440 and 660 C.E. This was followed by a drying trend between 660 and 1000 C.E. that triggered the balkanization of polities, increased warfare, and the asynchronous disintegration of polities, followed by population collapse in the context of an extended drought between 1020 and 1100 C.E.

435 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355