scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors outline a vision for the coordination and organization of knowledge systems that are better suited to the complex challenges of sustainability than the ones currently in place, including societal agenda setting, collective problem framing, a plurality of perspectives, integrative research processes, new norms for handling dissent and controversy, better treatment of uncertainty and of diversity of values, extended peer review, broader and more transparent metrics for evaluation, effective dialog processes, and stakeholder participation.

404 citations

Journal ArticleDOI
TL;DR: The authors in this paper investigated the importance of individual mitigation options such as energy intensity improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation.
Abstract: This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 18 energy-economy and integrated assessment models. The study investigated the importance of individual mitigation options such as energy intensity improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Limiting the atmospheric greenhouse gas concentration to 450 or 550 ppm CO2 equivalent by 2100 would require a decarbonization of the global energy system in the 21st century. Robust characteristics of the energy transformation are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy are found to be most important, due in part to their combined ability to produce negative emissions. The importance of individual low-carbon electricity technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology availability.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO 2 GHG emissions from various agricultural activities by combining socioeconomic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields.
Abstract: Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO 2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO 2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO 2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO 2 GHG emissions. As a result, we found that global agricultural non-CO 2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO 2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO 2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO 2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.

400 citations

Journal ArticleDOI
01 Sep 2018
TL;DR: In this paper, a review of the use of nexus approaches to sustainable development challenges is presented, with a focus on food, water, and energy, and a systematic procedure and future directions.
Abstract: Many global challenges, though interconnected, have been addressed singly, at times reducing one problem while exacerbating others. Nexus approaches simultaneously examine interactions among multiple sectors. Recent quantitative studies have revealed that nexus approaches can uncover synergies and detect trade-offs among sectors. If well implemented, nexus approaches have the potential to reduce negative surprises and promote integrated planning, management and governance. However, application and implementation of nexus approaches are in their infancy. No studies have explicitly quantified the contributions of nexus approaches to progress toward meeting the Sustainable Development Goals. To further implement nexus approaches and realize their potential, we propose a systematic procedure and provide perspectives on future directions. These include expanding nexus frameworks that consider interactions among more sectors, across scales, between adjacent and distant places, and linkages with Sustainable Development Goals; incorporating overlooked drivers and regions; diversifying nexus toolboxes; and making these strategies central in policy-making and governance for integrated Sustainable Development Goal implementation. Sustainability challenges, such as feeding people with fewer resources, involve challenges at the nexus of multiple issues, such as food, water and energy. This Review explores such nexus approaches, surveying their use towards sustainable development challenges, discussing examples, and proposing a systematic procedure and future directions.

400 citations

Journal ArticleDOI
01 Aug 2009-EPL
TL;DR: This work proposes a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of the complex network theory, and reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data.
Abstract: We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of the complex network theory. We show that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high-energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long-term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis, and have ensured their robustness by intensive significance testing.

397 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355