scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus, by means of the Lyapunov function approach and the decomposition method and to reveal the intrinsic effect of communication topologies on consensus performance.
Abstract: In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.

202 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the notion of adaptiveness and discuss the role of social learning in building adaptiveness, which refers to the capacity of a social actor or social-ecological system to adapt in response to, or in anticipation of, changes in the environment.
Abstract: The article introduces the notion of adaptiveness and discusses the role of social learning in it. Adaptiveness refers to the capacity of a social actor or social–ecological system to adapt in response to, or in anticipation of, changes in the environment. We explore arguments both from a theoretical perspective and through illustrations from case studies of water management in the Alps of Europe and Mekong in southeast Asia. We propose and illustrate that social learning processes are important for building adaptiveness in several ways and at different scales. Social learning can help cope with informational uncertainty; reduce normative uncertainty; build consensus on criteria for monitoring and evaluation; empower stakeholders to take adaptive actions; reduce conflicts and identify synergies between adaptations; and improve fairness of decisions and actions. Findings in the case studies provide some support for these generalizations but often with caveats related to diversity of stakeholder interests, levels of shared understanding versus contested knowledge and scale of coordination. For this reason, we suggest that future work pays greater attention to issues of agency, knowledge and scale: What strategies have individuals and organizations pursued in successful examples of social learning? How are the boundaries and interactions between science, policy and practice managed? How does social learning occur across spatial and temporal scales?

201 citations

Journal ArticleDOI
TL;DR: In this article, the authors use an integrated energy-economy-climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges, and show that with comprehensive emissions reductions starting after 2015 and full technology availability, the maximum 21st century warming may still be limited below 2°C with a likely probability and at moderate economic impacts.
Abstract: While the international community aims to limit global warming to below 2 ° C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy–economy–climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 ° C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ∼0.4 ° C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ∼0.3 ° C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 ° C target within reach.

201 citations

Journal ArticleDOI
17 Jun 2015-PLOS ONE
TL;DR: This work identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits.
Abstract: Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.

201 citations

Journal ArticleDOI
TL;DR: It is shown that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO 2 eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5‬C Paris goals, which shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
Abstract: Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.

201 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355