scispace - formally typeset
Search or ask a question
Institution

Princeton Plasma Physics Laboratory

FacilityPlainsboro Center, New Jersey, United States
About: Princeton Plasma Physics Laboratory is a facility organization based out in Plainsboro Center, New Jersey, United States. It is known for research contribution in the topics: Tokamak & Plasma. The organization has 2427 authors who have published 4475 publications receiving 106926 citations. The organization is also known as: PPPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two new scaling expressions for tokamak L-mode energy confinement are proposed, namely a power law scaling and an offset-linear scaling, based on an analysis of the ITER Lmode ECC database.
Abstract: On the basis of an analysis of the ITER L-mode energy confinement database, two new scaling expressions for tokamak L-mode energy confinement are proposed, namely a power law scaling and an offset-linear scaling. The analysis indicates that the present multiplicity of scaling expressions for the energy confinement time τE in tokamaks (Goldston, Kaye, Odajima-Shimomura, Rebut-Lallia, etc.) is due both to the lack of variation of a key parameter combination in the database, fs = 0.32 R a−0.75 k0.5 ~ A a0.25k0.5, and to variations in the dependence of τE on the physical parameters among the different tokamaks in the database. By combining multiples of fs and another factor, fq = 1.56 a2 kB/RIp = qeng/3.2, which partially reflects the tokamak to tokamak variation of the dependence of τE on q and therefore implicitly the dependence of τE on Ip and ne, the two proposed confinement scaling expressions can be transformed to forms very close to most of the common scaling expressions. To reduce the multiplicity of the scalings for energy confinement, the database must be improved by adding new data with significant variations in fs, and the physical reasons for the tokamak to tokamak variation of some of the dependences of the energy confinement time on tokamak parameters must be clarified.

504 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the results from confinement scaling experiments on tokamaks with strong auxiliary heating and made an attempt to draw these results together into a low-density ohmic confinement scaling law, and a scaling law for confinement with auxiliary heating.
Abstract: Recent results from confinement scaling experiments on tokamaks with ohmic and strong auxiliary heating are reviewed. An attempt is made to draw these results together into a low-density ohmic confinement scaling law, and a scaling law for confinement with auxiliary heating. The auxiliary heating confinement law may also serve to explain the saturation in tau/sub E/ vs anti n/sub e/ observed in some ohmic heating density scaling experiments.

411 citations

Journal ArticleDOI
TL;DR: In this paper, a cascade model is presented, based on the assumptions of local nonlinear energy transfer in Wavenumber space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma.
Abstract: This paper studies the turbulent cascade of magnetic energy in weakly col- lisional magnetized plasmas. A cascade model is presented, based on the assumptions of local nonlinear energy transfer in wavenumber space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma. The model follows the nonlinear cascade of energy from the driving scale in the MHD regime, through the transition at the ion Lar- mor radius into the kinetic Alfven wave regime, in which the turbulence is dissipated by kinetic processes. The turbulent fluctuations remain at frequencies below the ion cy- clotron frequency due to the strong anisotropy of the turbulent fluctuations, kk ≪ k⊥ (implied by critical balance). In this limit, the turbulence is optimally described by gy- rokinetics; it is shown that the gyrokinetic approximation is well satisfied for typical slow solar wind parameters. Wave phase velocity measurements are consistent with a kinetic Alfven wave cascade and not the onset of ion cyclotron damping. The conditions under which the gyrokinetic cascade reaches the ion cyclotron frequency are established. Cas- cade model solutions imply that collisionless damping provides a natural explanation for the observed range of spectral indices in the dissipation range of the solar wind. The dis- sipation range spectrum is predicted to be an exponential fall off; the power-law behav- ior apparent in observations may be an artifact of limited instrumental sensitivity. The cascade model is motivated by a programme of gyrokinetic simulations of turbulence and particle heating in the solar wind.

377 citations

Journal ArticleDOI
TL;DR: In this paper, a coordinate system for nonlinear fluid, gyrokinetic Vlasov, or particle simulations is presented that exploits the elongated nature of the turbulence by resolving the minimum necessary simulation volume: a long thin twisting flux tube.
Abstract: Turbulence in tokamaks is characterized by long parallel wavelengths and short perpendicular wavelengths. A coordinate system for nonlinear fluid, gyrokinetic ‘‘Vlasov,’’ or particle simulations is presented that exploits the elongated nature of the turbulence by resolving the minimum necessary simulation volume: a long thin twisting flux tube. It is very similar to the ballooning representation, although periodicity constraints can be incorporated in a manner that allows E×B nonlinearities to be evaluated efficiently with fast Fourier transforms (FFT’s). If the parallel correlation length is very long, however, enforcing periodicity can introduce artificial correlations, so periodicity should not necessarily be enforced in the poloidal angle at θ=±π. This method is applied to high resolution three‐dimensional simulations of toroidal ion temperature gradient (ITG) driven turbulence, which predict fluctuation spectra and ion heat transport similar to experimental measurements.

372 citations

Journal ArticleDOI
TL;DR: In this article, the scaling of the energy confinement in H mode plasmas with different hydrogenic isotopes (hydrogen, deuterium, DT and tritium) is investigated in JET.
Abstract: The scaling of the energy confinement in H mode plasmas with different hydrogenic isotopes (hydrogen, deuterium, DT and tritium) is investigated in JET. For ELM-free H modes the thermal energy confinement time τth is found to decrease weakly with the isotope mass (τth ~M-0.25±0.22), whilst in ELMy H modes the energy confinement time shows practically no mass dependence (τth ~M0.03±0.1). Detailed local transport analysis of the ELMy H mode plasmas reveals that the confinement in the edge region increases strongly with the isotope mass, whereas the confinement in the core region decreases with mass (τthcore ∝ M-0.16), in approximate agreement with theoretical models of the gyro-Bohm type (τgB ~M-0.2).

355 citations


Authors

Showing all 2454 results

NameH-indexPapersCitations
David W. Johnson1602714140778
Kazuhiko Hara1411956107697
David R. Smith11088191683
Hantao Ji10579342035
David J. McComas9779438120
James R. Wilson89127137470
Bruce M. Jakosky7144120916
Patrick Diamond7160422522
Roger V. Yelle6929914469
Kwan-Liu Ma6552615442
Liu Chen6434316067
Gennady Shvets6444919516
David B. Graves6427815173
Brian LaBombard6338313721
Amitava Bhattacharjee6148114428
Network Information
Related Institutions (5)
Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

79% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

75% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

74% related

Sandia National Laboratories
46.7K papers, 1.4M citations

74% related

Argonne National Laboratory
64.3K papers, 2.4M citations

74% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202238
2021241
2020233
2019289
2018326