scispace - formally typeset
Search or ask a question
Institution

Purdue University

EducationWest Lafayette, Indiana, United States
About: Purdue University is a education organization based out in West Lafayette, Indiana, United States. It is known for research contribution in the topics: Population & Heat transfer. The organization has 73219 authors who have published 163563 publications receiving 5775236 citations. The organization is also known as: Purdue & Purdue-West Lafayette.


Papers
More filters
Book ChapterDOI
Dale H. Schunk1
01 Jan 1995
TL;DR: Schunk et al. as discussed by the authors found that students' cognitions influence the instigation, direction, strength, and persistence of their achievement behaviors (Schunk, 1989b; Weinstein, 1989; Zimmerman, 1990).
Abstract: Current theoretical accounts of learning and instruction postulate that students are active seekers and processors of information (Pintrich, Cross, Kozma, & McKeachie, 1986; Shuell, 1986). Research indicates that students’ cognitions influence the instigation, direction, strength, and persistence of their achievement behaviors (Schunk, 1989b; Weinstein, 1989; Zimmerman, 1990).

718 citations

Journal ArticleDOI
TL;DR: The pre-print version of the Published Article can be accessed from the link below - Copyright @ 2010 Springer Verlag as discussed by the authors, which can be viewed as a preprint of the published article.
Abstract: This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer Verlag

717 citations

Journal ArticleDOI

717 citations

Journal ArticleDOI
22 Jun 2015
TL;DR: In this article, the authors considered an MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server and formulated the offloading problem as the joint optimization of the radio resources and the computational resources to minimize the overall users' energy consumption, while meeting latency constraints.
Abstract: Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider an MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources—the transmit precoding matrices of the MUs—and the computational resources—the CPU cycles/second assigned by the cloud to each MU—in order to minimize the overall users’ energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to compute the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. We then show that the proposed algorithmic framework naturally leads to a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.

715 citations

Journal ArticleDOI
TL;DR: It is reported that SCFAs can directly promote T-cell differentiation into T cells producing interleukin-17, interferon-γ, and/or IL-10 depending on cytokine milieu.

715 citations


Authors

Showing all 73693 results

NameH-indexPapersCitations
Yi Cui2201015199725
Yi Chen2174342293080
David Miller2032573204840
Hongjie Dai197570182579
Chris Sander178713233287
Richard A. Gibbs172889249708
Richard H. Friend1691182140032
Charles M. Lieber165521132811
Jian-Kang Zhu161550105551
David W. Johnson1602714140778
Robert Stone1601756167901
Tobin J. Marks1591621111604
Joseph Wang158128298799
Ed Diener153401186491
Wei Zheng1511929120209
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

98% related

Pennsylvania State University
196.8K papers, 8.3M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023194
2022834
20217,499
20207,699
20197,294
20186,840