scispace - formally typeset
Search or ask a question

Showing papers by "Pusan National University published in 2019"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, T. D. Abbott, Fausto Acernese3  +1157 moreInstitutions (70)
TL;DR: In this paper, the authors improved initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data.
Abstract: On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

715 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

464 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1237 moreInstitutions (131)
TL;DR: In this paper, the authors place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime of a binary neutron star inspiral.
Abstract: The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.

430 citations


Journal ArticleDOI
30 Mar 2019
TL;DR: The Committee of Clinical Practice Guidelines of KSSO determined that bariatric surgery is indicated for Korean patients with BMI ≥35 kg/m2 and for Koreans with BMI ≤30 kg/ m2 who have comorbidities.
Abstract: Obesity increases the risks of diabetes, hypertension, and cardiovascular diseases, ultimately contributing to mortality. Korean Society for the Study of Obesity (KSSO) was established to improve the management of obesity through research and education; to that end, the Committee of Clinical Practice Guidelines of KSSO reviews systemic evidence using expert panels to develop clinical guidelines. The clinical practice guidelines for obesity were revised in 2018 using National Health Insurance Service Health checkup data from 2006 to 2015. Following these guidelines, we added a category, class III obesity, which includes individuals with body mass index (BMI) ≥35 kg/m2. Agreeing with the International Federation for the Surgery of Obesity and Metabolic Disorders, Asian Pacific Chapter consensus, we determined that bariatric surgery is indicated for Korean patients with BMI ≥35 kg/m2 and for Korean patients with BMI ≥30 kg/m2 who have comorbidities. The new guidelines focus on guiding clinicians and patients to manage obesity more effectively. Our recommendations and treatment algorithms can serve as a guide for the evaluation, prevention, and management of overweight and obesity.

426 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Journal ArticleDOI
01 Mar 2019-Science
TL;DR: Advances in the understanding of pantropical interbasin climate interactions are reviewed and their implications for both climate prediction and future climate projections are reviewed.
Abstract: The El Nino-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

420 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations


Journal ArticleDOI
TL;DR: In a growing number of galaxy clusters diffuse extended radio sources have been found. as mentioned in this paper classified diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources.
Abstract: In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible “intermediate” sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the cluster’s periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line ( http://galaxyclusters.com ). We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.

347 citations


Journal ArticleDOI
TL;DR: Over 14 000 porous, three-dimensional metal–organic framework structures are compiled and analyzed as a part of an update to the Computation-Ready, Experimental Metal–Organic Framework Database.
Abstract: Over 14 000 porous, three-dimensional metal–organic framework structures are compiled and analyzed as a part of an update to the Computation-Ready, Experimental Metal–Organic Framework Database (Co...

311 citations


Journal ArticleDOI
TL;DR: This review discusses newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging and provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept.
Abstract: Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.

Posted Content
TL;DR: This survey provides a holistic overview of MEC technology and its potential use cases and applications, and outlines up-to-date researches on the integration of M EC with the new technologies that will be deployed in 5G and beyond.
Abstract: Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research.

Journal ArticleDOI
TL;DR: In a prospective cohort of pancreatic cancer patients, longitudinal monitoring using liquid biopsy samples through exoDNA and ctDNA provides both predictive and prognostic information relevant to therapeutic stratification.

Journal ArticleDOI
Ashok Agarwal1, Neel Parekh1, Manesh Kumar Panner Selvam1, Ralf Henkel2, Ralf Henkel1, Rupin Shah3, Sheryl T. Homa4, Ranjith Ramasamy5, Edmund Y. Ko6, Kelton Tremellen7, Sandro C. Esteves8, Sandro C. Esteves9, Ahmad Majzoub10, Ahmad Majzoub1, Juan G. Alvarez11, David K. Gardner12, Channa N. Jayasena13, Channa N. Jayasena14, Jonathan Ramsay14, Chak-Lam Cho15, Ramadan A Saleh16, Denny Sakkas, James M. Hotaling17, Scott Lundy1, Sarah C. Vij1, Joel L. Marmar18, Jaime Gosálvez19, Edmund Sabanegh1, Hyun Jun Park20, Armand Zini21, Parviz Kavoussi, Sava Micic, Ryan P. Smith22, Gian Maria Busetto23, Mustafa Emre Bakircioglu, Gerhard Haidl24, Giancarlo Balercia, Nicolás Garrido Puchalt, Moncef Ben-Khalifa, Nicholas N. Tadros25, Jackson Kirkman-Browne26, Sergey I. Moskovtsev27, Xuefeng Huang28, Edson Borges, Daniel R. Franken29, Natan Bar-Chama30, Yoshiharu Morimoto, Kazuhisa Tomita, Vasan Satya Srini, Willem Ombelet31, Elisabetta Baldi32, Monica Muratori32, Yasushi Yumura33, Sandro La Vignera34, Raghavender Kosgi, Marlon Martinez35, Donald P. Evenson, Daniel Suslik Zylbersztejn, Matheus Roque, Marcello Cocuzza36, Marcelo Vieira37, Assaf Ben-Meir38, Raoul Orvieto39, Raoul Orvieto40, Eliahu Levitas41, Amir Wiser40, Amir Wiser42, Mohamed Arafa10, Vineet Malhotra, Sijo Parekattil43, Haitham Elbardisi10, Luiz Carvalho, Rima Dada44, Christophe Sifer, Pankaj Talwar45, Ahmet Gudeloglu46, Ahmed M A Mahmoud, Khaled Terras, Chadi Yazbeck, Bojanic Nebojsa47, Damayanthi Durairajanayagam48, Ajina Mounir49, Linda G. Kahn50, Saradha Baskaran1, Rishma Pai3, Donatella Paoli23, Kristian Leisegang2, Mohamed Reza Moein, Sonia Malik, Önder Yaman, Luna Samanta51, Fouad Bayane, Sunil Jindal, Muammer Kendirci, Barış Altay52, Dragoljub Perovic, Avi Harlev41 
TL;DR: Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants) and may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose.
Abstract: Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.

Journal ArticleDOI
TL;DR: In this article, the authors examined the efficiency and mechanism of peroxymonosulfate (PMS) activation by twenty metal and metalloid nanoparticles loaded on alumina.
Abstract: This study comparatively examines the efficiency and mechanism of peroxymonosulfate (PMS) activation by twenty metal and metalloid nanoparticles loaded on alumina. Among the tested metals, Co exhibited the highest capacity for PMS activation and accompanying oxidative degradation of trichlorophenol (TCP), a representative organic pollutant in water. Other transition metals such as Mn, Cu, Mo, Ni, and W exhibited moderate activity, while Ti, Zn, Fe, V, Cr, Al, and Si were mostly ineffective. In contrast, all of the tested noble metals (Ru, Rh, Pd, Ir, Pt, and Au) except Ag enabled rapid PMS activation and TCP degradation, outperforming Co at acidic pH. Transition metals with noticeable PMS activation capacity differed from noble metals in several aspects, such as the effect of radical quenching on 4-chlorophenol (4-CP) degradation, electron paramagnetic resonance spectral features, oxidative conversion of bromide into bromate, and oxidation intermediate distribution. They were also distinguishable with respect to the dependence of PMS degradation on the presence of an electron donor (i.e., TCP), the capacity to activate peroxydisulfate (PDS), and the electrochemical response upon addition of PMS and 4-CP when fabricated into electrodes. Based on these observations, we categorized surface-loaded metal nanoparticles into two groups with distinctive PMS activation mechanisms: (i) transition metals such as Co, Cu, and Mo that activate PMS to produce highly reactive sulfate radicals (SO4 −); and (ii) noble metals such as Rh, Ir, and Au that mediated direct electron transfer from organic compound (electron donor) to persulfate (electron acceptor) without involving the formation of radical species.

Journal ArticleDOI
TL;DR: Body-scale epidermal electronic interfaces for electrophysiological recordings enable the control of a transhumeral prosthesis, long-term electroencephalography, and simultaneous electroencephography and structural and functional MRI with magnetic resonance imaging.
Abstract: Skin-interfaced medical devices are critically important for diagnosing disease, monitoring physiological health and establishing control interfaces with prosthetics, computer systems and wearable robotic devices. Skin-like epidermal electronic technologies can support these use cases in soft and ultrathin materials that conformally interface with the skin in a manner that is mechanically and thermally imperceptible. Nevertheless, schemes so far have limited the overall sizes of these devices to less than a few square centimetres. Here, we present materials, device structures, handling and mounting methods, and manufacturing approaches that enable epidermal electronic interfaces that are orders of magnitude larger than previously realized. As a proof-of-concept, we demonstrate devices for electrophysiological recordings that enable coverage of the full scalp and the full circumference of the forearm. Filamentary conductive architectures in open-network designs minimize radio frequency-induced eddy currents, forming the basis for structural and functional compatibility with magnetic resonance imaging. We demonstrate the use of the large-area interfaces for the multifunctional control of a transhumeral prosthesis by patients who have undergone targeted muscle-reinnervation surgery, in long-term electroencephalography, and in simultaneous electroencephalography and structural and functional magnetic resonance imaging.

Journal ArticleDOI
TL;DR: The authors determine the atomic structure and electronic properties of chalcogen-site point defects common to monolayer MoSe2 and WS2, and find that these are substitutional defects, where a chalCogen atom is substituted by an oxygen atom, rather than vacancies.
Abstract: Chalcogen vacancies are generally considered to be the most common point defects in transition metal dichalcogenide (TMD) semiconductors because of their low formation energy in vacuum and their frequent observation in transmission electron microscopy studies. Consequently, unexpected optical, transport, and catalytic properties in 2D-TMDs have been attributed to in-gap states associated with chalcogen vacancies, even in the absence of direct experimental evidence. Here, we combine low-temperature non-contact atomic force microscopy, scanning tunneling microscopy and spectroscopy, and state-of-the-art ab initio density functional theory and GW calculations to determine both the atomic structure and electronic properties of an abundant chalcogen-site point defect common to MoSe2 and WS2 monolayers grown by molecular beam epitaxy and chemical vapor deposition, respectively. Surprisingly, we observe no in-gap states. Our results strongly suggest that the common chalcogen defects in the described 2D-TMD semiconductors, measured in vacuum environment after gentle annealing, are oxygen substitutional defects, rather than vacancies.

Journal ArticleDOI
TL;DR: This review article reports the state-of-the-art knowledge of lignocellulose liquefaction in the recent three years with the main focus on the feedstock, liquefactions technology, target products, and degradation mechanism of each biomass component.

Journal ArticleDOI
TL;DR: The enzymatic biosensor reveals the advantages of increased sensitivity, selectivity, and stability, compared with the non-enzymatic sensor, which shows an excellent catalytic oxidation of glucose even in physiological pH.

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: The third volume of the FCC Conceptual Design Report as discussed by the authors is devoted to the hadron collider FCC-hh, and summarizes the physics discovery opportunities, presents the FCC-HH accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.

Journal ArticleDOI
Marcelle Soares-Santos1, Antonella Palmese2, W. G. Hartley3, J. Annis2  +1285 moreInstitutions (156)
TL;DR: In this article, a multi-messenger measurement of the Hubble constant H 0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES), is presented.
Abstract: We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in ${H}_{0}={75}_{-32}^{+40}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}$, which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find ${H}_{0}={78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}$ (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the recent progress in passive anti-icing coating materials and methodologies and describe the role of SLIPS in anti-ice coating and their use.

Journal ArticleDOI
TL;DR: The toxicity of the mixture could be better predicted using a concentration addition model than an independent action model and the risk quotients of SMZ, SMX, and their mixture were >1 during the experiment, indicating their high potential risks on aquatic microorganisms.

Journal ArticleDOI
18 Sep 2019-Cells
TL;DR: The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radiores resistance, and the therapeutic approaches used to overcome radioresistance.
Abstract: Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.

Journal ArticleDOI
TL;DR: Proteogenomic analysis of diffuse gastric cancers in young populations provides additional information beyond genomic analyses, which can improve understanding of cancer biology and patient stratification in diffuse GCs.

Journal ArticleDOI
TL;DR: The authors focus on two flexible models, Bayesian and frequentist, to determine overall effect sizes in network meta-analysis, making the material easy to understand for Korean researchers who did not major in statistics.
Abstract: The objective of this study is to describe the general approaches to network meta-analysis that are available for quantitative data synthesis using R software. We conducted a network meta-analysis using two approaches: Bayesian and frequentist methods. The corresponding R packages were "gemtc" for the Bayesian approach and "netmeta" for the frequentist approach. In estimating a network meta-analysis model using a Bayesian framework, the "rjags" package is a common tool. "rjags" implements Markov chain Monte Carlo simulation with a graphical output. The estimated overall effect sizes, test for heterogeneity, moderator effects, and publication bias were reported using R software. The authors focus on two flexible models, Bayesian and frequentist, to determine overall effect sizes in network meta-analysis. This study focused on the practical methods of network meta-analysis rather than theoretical concepts, making the material easy to understand for Korean researchers who did not major in statistics. The authors hope that this study will help many Korean researchers to perform network meta-analyses and conduct related research more easily with R software.

Journal ArticleDOI
TL;DR: This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications, and holds great promise as a biomaterial for developing medical products and therapeutics.
Abstract: This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold—a three-dimensional (3D) structure fabricated from biomaterials—is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.

Journal ArticleDOI
TL;DR: In this paper, an innovative, facile, low-cost and one-pot hydrothermal carbonization method was developed for the synthesis of bright fluorescence nitrogen-doped carbon dots (NCDs) using Piper betle (Betel) leaf as a carbon and nitrogen precursor.

Journal ArticleDOI
TL;DR: In this article, a few layered black phosphorus/MoS2 (BP-MoS 2) nanohybrid was successfully prepared and verified it for photocatalytic hydrogen evolution using CdS nanorods as light absorbers.
Abstract: Exploring active and stable photocatalysts is an essential requirement for boosting the efficiency of photocatalytic water splitting to obtain clean hydrogen fuel. Here, a few layered black phosphorus/MoS2 (BP-MoS2) nanohybrid was successfully prepared and verified it for photocatalytic hydrogen evolution using CdS nanorods as light absorbers. The resulting nanohybrids manifest remarkable catalytic performance with high amount of H2 production (CdS/BP-MoS2: 183.24 mmol h–1 g–1) and outstanding catalytic stability. The observed amount of H2 is much higher than that of various CdS/BP and CdS/MoS2 based nanohybrids reported earlier. We expect that the demonstrated new heterostructured design strategy may bring novel insights to develop low-price noble metal free photocatalysts for hydrogen evolution.

Journal ArticleDOI
Jianjian Fu1, Lei Li1, Je Moon Yun1, Damin Lee1, Bong-Ki Ryu1, Kwang Ho Kim1 
TL;DR: In this paper, NiCo2S4/MXene was successfully fabricated through electrostatic assembly by combining negatively charged delaminated titanium carbide (MXene) with positively charged sisal-like NiCo 2S4, owing to the electrostatic interaction between the oppositely charged substances.