scispace - formally typeset
Search or ask a question
Institution

Pusan National University

EducationBusan, South Korea
About: Pusan National University is a education organization based out in Busan, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 24124 authors who have published 45054 publications receiving 819356 citations. The organization is also known as: Busan National University & Pusan University.


Papers
More filters
Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1692 moreInstitutions (195)
TL;DR: In this article, the authors reported the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries.
Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses.

374 citations

Journal ArticleDOI
TL;DR: An alternative working model is proposed to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs, and it is suggested that lesion penetration may contribute to treatment outcome.
Abstract: Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development Using a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside In contrast, moxifloxacin, which is active in vitro against a subpopulation of Mycobacterium tuberculosis that persists in specific niches under drug pressure and has achieved treatment shortening in mice, does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials We suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug-resistant TB We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs The finding that lesion penetration may contribute to treatment outcome has wide implications for TB

372 citations

Journal ArticleDOI
TL;DR: A mechanism by which the DJ-1-dependent mitochondrial defects contribute to the increased sensitivity to oxidative stress-induced cell death that has been previously reported is defined.
Abstract: Growing evidence highlights a role for mitochondrial dysfunction and oxidative stress as underlying contributors to Parkinson’s disease (PD) pathogenesis. DJ-1 (PARK7) is a recently identified recessive familial PD gene. Its loss leads to increased susceptibility of neurons to oxidative stress and death. However, its mechanism of action is not fully understood. Presently, we report that DJ-1 deficiency in cell lines, cultured neurons, mouse brain and lymphoblast cells derived from DJ-1 patients display aberrant mitochondrial morphology. We also show that these DJ-1-dependent mitochondrial defects contribute to oxidative stress-induced sensitivity to cell death since reversal of this fragmented mitochondrial phenotype abrogates neuronal cell death. Reactive oxygen species (ROS) appear to play a critical role in the observed defects, as ROS scavengers rescue the phenotype and mitochondria isolated from DJ-1 deficient animals produce more ROS compared with control. Importantly, the aberrant mitochondrial phenotype can be rescued by the expression of Pink1 and Parkin, two PD-linked genes involved in regulating mitochondrial dynamics and quality control. Finally, we show that DJ-1 deficiency leads to altered autophagy in murine and human cells. Our findings define a mechanism by which the DJ-1-dependent mitochondrial defects contribute to the increased sensitivity to oxidative stress-induced cell death that has been previously reported.

369 citations

Journal ArticleDOI
TL;DR: In this article, thermoplastic starch (TPS)/clay hybrids were prepared by melt intercalation and three organically modified montmorillonite (MMT) with different ammonium cations and one unmodified Na+ MMT (Cloisite Na+) were used.
Abstract: Biodegradable thermoplastic starch (TPS)/clay hybrids were prepared by melt intercalation. Three organically modified montmorillonite (MMT) with different ammonium cations and one unmodified Na+ MMT (Cloisite Na+) were used. Cloisite Na+ showed the best dispersion in the TPS matrix. It was observed that the TPS/Cloisite Na+ hybrid showed an intercalation of TPS in the silicate layer due to the matching of the surface polarity and interactions of the Cloisite Na+ and the TPS, which gives higher tensile strength and better barrier properties to water vapor as compared to the other TPS/organoclay hybrids as well as the pristine TPS. It was found that the dynamic mechanical properties of the TPS/clay hybrids were also affected by the polar interactions.

369 citations

Journal ArticleDOI
TL;DR: The functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity is discussed to obtain an integrated understanding of the immune responses in plant cells.
Abstract: As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

368 citations


Authors

Showing all 24296 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Taeghwan Hyeon13956375814
George C. Schatz137115594910
Darwin J. Prockop12857687066
Mark A. Ratner12796868132
Csaba Szabó12395861791
David E. McClelland10760272881
Yong Sik Ok10285441532
C. M. Mow-Lowry10137866659
I. K. Yoo10143732681
Haijun Yang10040335114
Buddy D. Ratner9950135660
Dong Jo Kim9849736272
Shuzhi Sam Ge9788340865
B. J. J. Slagmolen9634962356
Network Information
Related Institutions (5)
Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Chonnam National University
36.1K papers, 744.2K citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202391
2022302
20213,260
20203,069
20193,039
20182,718