scispace - formally typeset
Search or ask a question
Institution

Qualcomm

CompanyFarnborough, United Kingdom
About: Qualcomm is a company organization based out in Farnborough, United Kingdom. It is known for research contribution in the topics: Wireless & Signal. The organization has 19408 authors who have published 38405 publications receiving 804693 citations. The organization is also known as: Qualcomm Incorporated & Qualcomm, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: The principal feasibility of COMP is shown in two field testbeds with multiple sites and different backhaul solutions between the sites, and significant gains can be shown for both the uplink and downlink.
Abstract: Coordinated multipoint or cooperative MIMO is one of the promising concepts to improve cell edge user data rate and spectral efficiency beyond what is possible with MIMOOFDM in the first versions of LTE or WiMAX. Interference can be exploited or mitigated by cooperation between sectors or different sites. Significant gains can be shown for both the uplink and downlink. A range of technical challenges were identified and partially addressed, such as backhaul traffic, synchronization and feedback design. This article also shows the principal feasibility of COMP in two field testbeds with multiple sites and different backhaul solutions between the sites. These activities have been carried out by a powerful consortium consisting of universities, chip manufacturers, equipment vendors, and network operators.

1,093 citations

Journal ArticleDOI
TL;DR: This work provides an introduction to variational autoencoders and some important extensions, which provide a principled framework for learning deep latent-variable models and corresponding inference models.
Abstract: Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.

1,089 citations

Patent
17 May 1992
TL;DR: A power control system for a cellular mobile telephone system in which system users communicate information signals between one another via at least one cell-site using code division multiple access spread spectrum communication signals is described in this paper.
Abstract: A power control system for a cellular mobile telephone system in which system users communicate information signals between one another via at least one cell-site using code division multiple access spread spectrum communication signals. The power control system controls transmission signal power for each cellular mobile telephone in the cellular mobile telephone system wherein each cellular mobile telephone has an antenna (70), a transmitter (84), and a receiver (72, 74) and each cell-site also has an antenna (52), a transmitter (62), and a receiver (54, 56). Cell-site transmitted signal power is measured as received at the mobile unit. Transmitted power at the mobile unit is adjusted by transmit power control units (76, 80) in an opposite manner with respect to increases and decreases in received signal power. A power control feedback scheme may also be utilized. At the cell-site communicating with the mobile unit, the mobile unit transmitted power is measured by the received power measurement unit (60) at the cell-site. A command signal is generated at the cell-site and transmitted to the mobile unit for further adjusting mobile unit transmitter power corresponding to deviations in the cell-site received signal power. The feedback scheme is used to further adjust the mobile unit transmitter power so that mobile unit transmitted signals arrive at the cell-site at a desired power level.

1,047 citations

Journal ArticleDOI
TL;DR: It is shown that good beamformers are good packings of two-dimensional subspaces in a 2t-dimensional real Grassmannian manifold with chordal distance as the metric.
Abstract: We study a multiple-antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any finite set of beamformers. The universal lower bound provides a concise characterization of the gain with each additional bit of feedback information regarding the channel. Using the bound, it is shown that finite information systems approach the perfect information case as (t-1)2/sup -B/t-1/, where B is the number of feedback bits and t is the number of transmit antennas. The geometrical bounding technique, used in the proof of the lower bound, also leads to a design criterion for good beamformers, whose outage performance approaches the lower bound. The design criterion minimizes the maximum inner product between any two beamforming vectors in the beamformer codebook, and is equivalent to the problem of designing unitary space-time codes under certain conditions. Finally, we show that good beamformers are good packings of two-dimensional subspaces in a 2t-dimensional real Grassmannian manifold with chordal distance as the metric.

981 citations

Journal ArticleDOI
TL;DR: This work presents a systematic method of distributed algorithms for power control that is geometric-programming-based and shows that in the high Signal-to- interference Ratios (SIR) regime, these nonlinear and apparently difficult, nonconvex optimization problems can be transformed into convex optimized problems in the form of geometric programming.
Abstract: In wireless cellular or ad hoc networks where Quality of Service (QoS) is interference-limited, a variety of power control problems can be formulated as nonlinear optimization with a system-wide objective, e.g., maximizing the total system throughput or the worst user throughput, subject to QoS constraints from individual users, e.g., on data rate, delay, and outage probability. We show that in the high Signal-to- interference Ratios (SIR) regime, these nonlinear and apparently difficult, nonconvex optimization problems can be transformed into convex optimization problems in the form of geometric programming; hence they can be very efficiently solved for global optimality even with a large number of users. In the medium to low SIR regime, some of these constrained nonlinear optimization of power control cannot be turned into tractable convex formulations, but a heuristic can be used to compute in most cases the optimal solution by solving a series of geometric programs through the approach of successive convex approximation. While efficient and robust algorithms have been extensively studied for centralized solutions of geometric programs, distributed algorithms have not been explored before. We present a systematic method of distributed algorithms for power control that is geometric-programming-based. These techniques for power control, together with their implications to admission control and pricing in wireless networks, are illustrated through several numerical examples.

906 citations


Authors

Showing all 19413 results

NameH-indexPapersCitations
Jian Yang1421818111166
Xiaodong Wang1351573117552
Jeffrey G. Andrews11056263334
Martin Vetterli10576157825
Vinod Menon10126960241
Michael I. Miller9259934915
David Tse9243867248
Kannan Ramchandran9159234845
Michael Luby8928234894
Max Welling8944164602
R. Srikant8443226439
Jiaya Jia8029433545
Hai Li7957033848
Simon Haykin7745462085
Christopher W. Bielawski7633432512
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

92% related

Motorola
38.2K papers, 968.7K citations

89% related

Samsung
163.6K papers, 2M citations

88% related

NEC
57.6K papers, 835.9K citations

87% related

Texas Instruments
39.2K papers, 751.8K citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20229
20211,188
20202,266
20192,224
20182,124
20171,477