scispace - formally typeset
Search or ask a question
Institution

Queensland University of Technology

EducationBrisbane, Queensland, Australia
About: Queensland University of Technology is a education organization based out in Brisbane, Queensland, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 14188 authors who have published 55022 publications receiving 1496237 citations. The organization is also known as: QUT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) to reduce N2O emissions from an acidic Ferrosol.
Abstract: Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3– concentrations in biochar-amended soils. A decrease in NH4+ and NO3– following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3–. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.

329 citations

Journal ArticleDOI
TL;DR: In this paper, the first demonstration of using this organic-inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells was presented.
Abstract: Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.

329 citations

Journal ArticleDOI
TL;DR: It is suggested that apoptosis following heating may be triggered either by a limited increase in cytosolic calcium levels resulting from mild membrane changes or by DNA damage, and necrosis, on the other hand, is likely to be a consequence of severe membrane disruption.
Abstract: SummaryThe pathogenesis of heat-induced cell death is controversial. Categorizing the death occurring after various heat loads as either apoptosis or necrosis might help to elucidate this problem, since it has been shown that these two processes differ in their mode of initiation as well as in their morphological and biochemical features. Log-phase cultures of mastocytoma P-815 × 2·1 were heated at temperatures ranging from 42 to 47°C for 30 min. After 42°C heating a slight increase in apoptosis was observed morphologically. However, after heating at 43, 43.5 and 44°C, there was marked enhancement of apoptosis, and electrophoresis of DNA showed characteristic internucleosomal cleavage. With heating at 45°C both apoptosis and necrosis were enhanced, whereas at 46 and 47°C only necrosis was produced. DNA extracted from the 46 and 47°C cultures showed virtually no degradation, which contrasts with the random DNA breakdown observed in necrosis produced by other types of injury; lysosomal enzymes released duri...

329 citations

Journal ArticleDOI
TL;DR: The authors provided a systematic review of the literature on the theoretical foundations, measurement, antecedents, and outcomes of entrepreneurial selfefficacy, and work which treated ESE as a moderator.

329 citations

Journal ArticleDOI
TL;DR: Compared to a non-obese group, obese subjects showed increased forefoot width and higher plantar pressures during standing and walking and the greatest effect of body weight on higher peak pressures in the obese was found under the longitudinal arch of the foot and under the metatarsal heads.
Abstract: OBJECTIVE: To investigate plantar pressure differences between obese and non-obese adults during standing and walking protocols using a pressure distribution platform. SUBJECTS: Thirty-five males (age 42.4±10.8 y; 67–179 kg) and 35 females (age 40.0±12.6 y; 46–150 kg) divided into obese (body mass index (BMI) 38.75±5.97 kg/m2) and non-obese (BMI 24.28±3.00 kg/m2) sub-groups, respectively. MEASUREMENTS: Data collection was performed with a capacitive pressure distribution platform with a resolution of 2 sensors/cm2 (Emed F01, Novel GmbH, Munchen). The measurement protocol included half and full body weight standing on the left, right and both feet, respectively, and walking across the platform, striking with the right foot. Pressures were evaluated for eight anatomical sites under the feet. RESULTS: For both men and women, the mean pressure values of the obese were higher under all anatomical landmarks during half body weight standing. Significant increases in pressure were found under the heel, mid-foot and metatarsal heads II and IV for men and III and IV for women. Foot width during standing was also significantly increased in obese subjects. For walking, significantly higher peak pressures were also found in both obese males and females. CONCLUSION: Compared to a non-obese group, obese subjects showed increased forefoot width and higher plantar pressures during standing and walking. The greatest effect of body weight on higher peak pressures in the obese was found under the longitudinal arch of the foot and under the metatarsal heads. The higher pressures for obese women compared to obese men during static weight bearing (standing) may be the result of reduced strength of the ligaments of the foot.

329 citations


Authors

Showing all 14597 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
Paul M. Thompson1832271146736
Christopher J. O'Donnell159869126278
Robert G. Parton13645959737
Tim J Cole13682792998
Daniel I. Chasman13448472180
David Smith1292184100917
Dmitri Golberg129102461788
Chao Zhang127311984711
Shi Xue Dou122202874031
Thomas H. Marwick121106358763
Peter J. Anderson12096663635
Bruno S. Frey11990065368
David M. Evans11663274420
Michael Pollak11466357793
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

94% related

Monash University
100.6K papers, 3M citations

94% related

University of Queensland
155.7K papers, 5.7M citations

94% related

University of Sydney
187.3K papers, 6.1M citations

94% related

University of Melbourne
174.8K papers, 6.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023205
2022641
20214,219
20204,026
20193,623
20183,374