scispace - formally typeset
Search or ask a question
Institution

Radboud University Nijmegen

EducationNijmegen, Gelderland, Netherlands
About: Radboud University Nijmegen is a education organization based out in Nijmegen, Gelderland, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 35417 authors who have published 83035 publications receiving 3285064 citations. The organization is also known as: Catholic University of Nijmegen & Radboud University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that the diagnostic validity of social attributions from faces has been greatly overstated in the literature and the functional significance of these attributions is offered.
Abstract: Since the early twentieth century, psychologists have known that there is consensus in attributing social and personality characteristics from facial appearance. Recent studies have shown that surprisingly little time and effort are needed to arrive at this consensus. Here we review recent research on social attributions from faces. Section I outlines data-driven methods capable of identifying the perceptual basis of consensus in social attributions from faces (e.g., What makes a face look threatening?). Section II describes nonperceptual determinants of social attributions (e.g., person knowledge and incidental associations). Section III discusses evidence that attributions from faces predict important social outcomes in diverse domains (e.g., investment decisions and leader selection). In Section IV, we argue that the diagnostic validity of these attributions has been greatly overstated in the literature. In the final section, we offer an account of the functional significance of these attributions.

636 citations

Journal ArticleDOI
24 Sep 2010-Science
TL;DR: It is shown that FSHD patients carry specific single-nucleotide polymorphisms in the chromosomal region distal to the last D4Z4 repeat that creates a canonical polyadenylation signal for transcripts derived from DUX4, a double homeobox gene of unknown function that straddles the last repeat unit and the adjacent sequence.
Abstract: Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy in adults that is foremost characterized by progressive wasting of muscles in the upper body. FSHD is associated with contraction of D4Z4 macrosatellite repeats on chromosome 4q35, but this contraction is pathogenic only in certain "permissive" chromosomal backgrounds. Here, we show that FSHD patients carry specific single-nucleotide polymorphisms in the chromosomal region distal to the last D4Z4 repeat. This FSHD-predisposing configuration creates a canonical polyadenylation signal for transcripts derived from DUX4, a double homeobox gene of unknown function that straddles the last repeat unit and the adjacent sequence. Transfection studies revealed that DUX4 transcripts are efficiently polyadenylated and are more stable when expressed from permissive chromosomes. These findings suggest that FSHD arises through a toxic gain of function attributable to the stabilized distal DUX4 transcript.

635 citations

Journal Article
TL;DR: Results indicate preservation of the link between POU5F1 and pluripotency, as reported during normal development, after malignant transformation of GCT and the histological heterogeneity of this cancer.
Abstract: Human germ cell tumors (GCTs) may have variable histology and clinical behavior, depending on factors such as sex of the patient, age at clinical diagnosis, and anatomical site of the tumor. Some types of GCT, i.e., the seminomas/germinomas/dysgerminomas and embryonal carcinomas (the stem cell component of nonseminomas), have pluripotent potential, which is demonstrated by their capacity to differentiate into somatic and/or extraembryonic elements. Although embryonal carcinoma cells are intrinsically pluripotent, seminoma/germinoma/dysgerminoma cells, as well as their precursor carcinoma in situ/gonadoblastoma cells, have the phenotype of early germ cells that can be activated to pluripotency. The other types of GCT (teratomas and yolk sac tumors of infants and newborn, dermoid cyst of the ovary, and spermatocytic seminoma of elderly) are composed of (fully) differentiated tissues and lack the appearance of undifferentiated and pluripotent stem cells. OCT3/4, a transcription factor also known as OTF3 and POU5F1, is involved in regulation of pluripotency during normal development and is detectable in embryonic stem and germ cells. We analyzed the presence of POU5F1 in GCT and other tumor types using immunohistochemistry. The protein was consistently detected in carcinoma in situ/gonadoblastoma, seminomas/germinoma/dysgerminoma, and embryonal carcinoma but not in the various types of differentiated nonseminomas. Multitumor tissue microarray analysis covering >100 different tumor categories and 3600 individual cancers verified that POU5F1 expression is specific for particular subtypes of GCT of adults. No protein was observed in GCT of newborn and infants, spermatocytic seminomas, and the various tumors of nongerm cell origin. In addition, no difference in staining pattern was found in chemosensitive and chemoresistant GCT of adults. These results indicate preservation of the link between POU5F1 and pluripotency, as reported during normal development, after malignant transformation. Therefore, POU5F1 immunohistochemistry is an informative diagnostic tool for pluripotent GCT and offers new insights into the histological heterogeneity of this cancer.

633 citations

Journal ArticleDOI
11 Dec 2014-Nature
TL;DR: Transport and mass spectroscopy measurements are reported which establish that monolayers of graphene and hexagonal boron nitride are highly permeable to thermal protons under ambient conditions, whereas no proton transport is detected for thicker crystals such as monolayer molybdenum disulphide, bilayer graphene or multilayer hBN.
Abstract: Measurements show that monolayers of graphene and hexagonal boron nitride are unexpectedly highly permeable to thermal protons and that their conductivity rapidly increases with temperature, but that no proton transport is detected for few-layer crystals. A perfect graphene sheet is impermeable to all atoms and molecules: even hydrogen, the smallest of atoms, is not expected to penetrate through graphene's dense electronic cloud within billions of years. This characteristic is thought to extend to other two-dimensional crystals such as hexagonal boron nitride and molybdenum disulphide. Sheng Hu and colleagues now show that, surprisingly, monolayers of graphene and hexagonal boron nitride (but not molybdenum disulphide) are highly permeable to protons. In combination with their stability, this establishes these monolayers as promising candidates for use in many hydrogen-based technologies. Graphene is increasingly explored as a possible platform for developing novel separation technologies1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. This interest has arisen because it is a maximally thin membrane that, once perforated with atomic accuracy, may allow ultrafast and highly selective sieving of gases, liquids, dissolved ions and other species of interest2,9,10,11,12,13,14,15,16,17,18,19. However, a perfect graphene monolayer is impermeable to all atoms and molecules under ambient conditions1,2,3,4,5,6,7: even hydrogen, the smallest of atoms, is expected to take billions of years to penetrate graphene’s dense electronic cloud3,4,5,6. Only accelerated atoms possess the kinetic energy required to do this20,21. The same behaviour might reasonably be expected in the case of other atomically thin crystals22,23. Here we report transport and mass spectroscopy measurements which establish that monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons under ambient conditions, whereas no proton transport is detected for thicker crystals such as monolayer molybdenum disulphide, bilayer graphene or multilayer hBN. Protons present an intermediate case between electrons (which can tunnel easily through atomically thin barriers24) and atoms, yet our measured transport rates are unexpectedly high4,5 and raise fundamental questions about the details of the transport process. We see the highest room-temperature proton conductivity with monolayer hBN, for which we measure a resistivity to proton flow of about 10 Ω cm2 and a low activation energy of about 0.3 electronvolts. At higher temperatures, hBN is outperformed by graphene, the resistivity of which is estimated to fall below 10−3 Ω cm2 above 250 degrees Celsius. Proton transport can be further enhanced by decorating the graphene and hBN membranes with catalytic metal nanoparticles. The high, selective proton conductivity and stability make one-atom-thick crystals promising candidates for use in many hydrogen-based technologies.

632 citations


Authors

Showing all 35749 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Richard H. Friend1691182140032
Yang Gao1682047146301
Ian J. Deary1661795114161
David T. Felson153861133514
Margaret A. Pericak-Vance149826118672
Fernando Rivadeneira14662886582
Shah Ebrahim14673396807
Mihai G. Netea142117086908
Mingshui Chen1411543125369
George Alverson1401653105074
Barry Blumenfeld1401909105694
Harvey B Newman139159488308
Tariq Aziz138164696586
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

94% related

University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023123
2022492
20216,380
20206,080
20195,747
20185,114