scispace - formally typeset
Search or ask a question
Institution

Radboud University Nijmegen

EducationNijmegen, Gelderland, Netherlands
About: Radboud University Nijmegen is a education organization based out in Nijmegen, Gelderland, Netherlands. It is known for research contribution in the topics: Population & Randomized controlled trial. The organization has 35417 authors who have published 83035 publications receiving 3285064 citations. The organization is also known as: Catholic University of Nijmegen & Radboud University.


Papers
More filters
Journal ArticleDOI
20 Jun 2017-JAMA
TL;DR: To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location, a large cohort study recruited in 1997-2011 provides estimates of cancer risk based on BRCA1 and BRCa2 mutation carrier status.
Abstract: Importance: The clinical management of BRCA1 and BRCA2 mutation carriers requires accurate, prospective cancer risk estimates. Objectives: To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location. Design, Setting, and Participants: Prospective cohort study of 6036 BRCA1 and 3820 BRCA2 female carriers (5046 unaffected and 4810 with breast or ovarian cancer or both at baseline) recruited in 1997-2011 through the International BRCA1/2 Carrier Cohort Study, the Breast Cancer Family Registry and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, with ascertainment through family clinics (94%) and population-based studies (6%). The majority were from large national studies in the United Kingdom (EMBRACE), the Netherlands (HEBON), and France (GENEPSO). Follow-up ended December 2013; median follow-up was 5 years. Exposures: BRCA1/2 mutations, family cancer history, and mutation location. Main Outcomes and Measures: Annual incidences, standardized incidence ratios, and cumulative risks of breast, ovarian, and contralateral breast cancer. Results: Among 3886 women (median age, 38 years; interquartile range [IQR], 30-46 years) eligible for the breast cancer analysis, 5066 women (median age, 38 years; IQR, 31-47 years) eligible for the ovarian cancer analysis, and 2213 women (median age, 47 years; IQR, 40-55 years) eligible for the contralateral breast cancer analysis, 426 were diagnosed with breast cancer, 109 with ovarian cancer, and 245 with contralateral breast cancer during follow-up. The cumulative breast cancer risk to age 80 years was 72% (95% CI, 65%-79%) for BRCA1 and 69% (95% CI, 61%-77%) for BRCA2 carriers. Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for BRCA1 and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20-30 per 1000 person-years) until age 80 years. The cumulative ovarian cancer risk to age 80 years was 44% (95% CI, 36%-53%) for BRCA1 and 17% (95% CI, 11%-25%) for BRCA2 carriers. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% (95% CI, 35%-45%) for BRCA1 and 26% (95% CI, 20%-33%) for BRCA2 carriers (hazard ratio [HR] for comparing BRCA2 vs BRCA1, 0.62; 95% CI, 0.47-0.82; P=.001 for difference). Breast cancer risk increased with increasing number of first- and second-degree relatives diagnosed as having breast cancer for both BRCA1 (HR for ≥2 vs 0 affected relatives, 1.99; 95% CI, 1.41-2.82; P<.001 for trend) and BRCA2 carriers (HR, 1.91; 95% CI, 1.08-3.37; P=.02 for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P<.001). Conclusions and Relevance: These findings provide estimates of cancer risk based on BRCA1 and BRCA2 mutation carrier status using prospective data collection and demonstrate the potential importance of family history and mutation location in risk assessment.

1,733 citations

Journal ArticleDOI
Serena Nik-Zainal1, Serena Nik-Zainal2, Helen Davies1, Johan Staaf3, Manasa Ramakrishna1, Dominik Glodzik1, Xueqing Zou1, Inigo Martincorena1, Ludmil B. Alexandrov1, Sancha Martin1, David C. Wedge1, Peter Van Loo1, Young Seok Ju1, Michiel M. Smid4, Arie B. Brinkman5, Sandro Morganella6, Miriam Ragle Aure7, Ole Christian Lingjærde7, Anita Langerød8, Markus Ringnér3, Sung-Min Ahn9, Sandrine Boyault, Jane E. Brock, Annegien Broeks10, Adam Butler1, Christine Desmedt11, Luc Dirix12, Serge Dronov1, Aquila Fatima13, John A. Foekens4, Moritz Gerstung1, Gerrit Gk Hooijer14, Se Jin Jang15, David Jones1, Hyung-Yong Kim16, Tari Ta King17, Savitri Krishnamurthy18, Hee Jin Lee15, Jeong-Yeon Lee16, Yang Li1, Stuart McLaren1, Andrew Menzies1, Ville Mustonen1, Sarah O’Meara1, Iris Pauporté, Xavier Pivot19, Colin Ca Purdie20, Keiran Raine1, Kamna Ramakrishnan1, Germán Fg Rodríguez-González4, Gilles Romieu21, Anieta M. Sieuwerts4, Peter Pt Simpson22, Rebecca Shepherd1, Lucy Stebbings1, Olafur Oa Stefansson23, Jon W. Teague1, Stefania Tommasi, Isabelle Treilleux, Gert Van den Eynden12, Peter B. Vermeulen12, Anne Vincent-Salomon24, Lucy R. Yates1, Carlos Caldas25, Laura Van't Veer10, Andrew Tutt26, Andrew Tutt27, Stian Knappskog28, Benita Kiat Tee Bk Tan29, Jos Jonkers10, Åke Borg3, Naoto T. Ueno18, Christos Sotiriou11, Alain Viari, P. Andrew Futreal1, Peter J. Campbell1, Paul N. Span5, Steven Van Laere12, Sunil R. Lakhani22, Jorunn E. Eyfjord23, Alastair M Thompson, Ewan Birney6, Hendrik G. Stunnenberg5, Marc J. van de Vijver14, John W.M. Martens4, Anne Lise Børresen-Dale8, Andrea L. Richardson13, Gu Kong16, Gilles Thomas, Michael R. Stratton1 
02 Jun 2016-Nature
TL;DR: This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
Abstract: We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.

1,696 citations

Journal ArticleDOI
22 Apr 2016-Science
TL;DR: Proof-of-principle experimental studies support the hypothesis that trained immunity is one of the main immunological processes that mediate the nonspecific protective effects against infections induced by vaccines, such as bacillus Calmette-Guérin or measles vaccination.
Abstract: The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.

1,690 citations

Journal ArticleDOI
TL;DR: In this paper, a third type of integer quantum Hall effect is reported in bilayer graphene, where charge carriers have a parabolic energy spectrum but are chiral and show Berry's phase 2π affecting their quantum dynamics.
Abstract: There are two known distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems1,2, and the other is its relativistic counterpart observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase π, which results in shifted positions of the Hall plateaus3,4,5,6,7,8,9. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and show Berry’s phase 2π affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions, but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behaviour in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies.

1,665 citations


Authors

Showing all 35749 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Richard H. Friend1691182140032
Yang Gao1682047146301
Ian J. Deary1661795114161
David T. Felson153861133514
Margaret A. Pericak-Vance149826118672
Fernando Rivadeneira14662886582
Shah Ebrahim14673396807
Mihai G. Netea142117086908
Mingshui Chen1411543125369
George Alverson1401653105074
Barry Blumenfeld1401909105694
Harvey B Newman139159488308
Tariq Aziz138164696586
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

94% related

University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023123
2022492
20216,380
20206,080
20195,747
20185,114