scispace - formally typeset
Search or ask a question
Institution

Radboud University Nijmegen

EducationNijmegen, Gelderland, Netherlands
About: Radboud University Nijmegen is a education organization based out in Nijmegen, Gelderland, Netherlands. It is known for research contribution in the topics: Population & Randomized controlled trial. The organization has 35417 authors who have published 83035 publications receiving 3285064 citations. The organization is also known as: Catholic University of Nijmegen & Radboud University.


Papers
More filters
Journal ArticleDOI
Stephen J. Smartt1, Ting-Wan Chen2, Anders Jerkstrand2, Michael W. Coughlin3, Erkki Kankare1, Stuart A. Sim1, Morgan Fraser4, Cosimo Inserra5, Kate Maguire1, K. C. Chambers6, M. E. Huber6, Thomas Krühler2, Giorgos Leloudas7, M. R. Magee1, Luke J. Shingles1, K. W. Smith1, David Young1, John L. Tonry6, Rubina Kotak1, Avishay Gal-Yam8, J. D. Lyman9, D. Homan10, C. Agliozzo11, C. Agliozzo12, Joseph P. Anderson13, C. Angus5, Chris Ashall14, Cristina Barbarino15, Franz E. Bauer16, Franz E. Bauer12, Franz E. Bauer17, Marco Berton18, Marco Berton19, M. T. Botticella19, Mattia Bulla15, J. Bulger6, Giacomo Cannizzaro20, Giacomo Cannizzaro21, Zach Cano22, Régis Cartier5, Aleksandar Cikota13, P. Clark1, A. De Cia13, M. Della Valle19, Larry Denneau6, M. Dennefeld23, Luc Dessart24, Georgios Dimitriadis5, Nancy Elias-Rosa, R. E. Firth5, H. Flewelling6, A. Flörs2, A. Franckowiak, C. Frohmaier25, Lluís Galbany26, Santiago González-Gaitán27, Jochen Greiner2, Mariusz Gromadzki28, A. Nicuesa Guelbenzu, Claudia P. Gutiérrez5, A. Hamanowicz13, A. Hamanowicz28, Lorraine Hanlon4, Jussi Harmanen29, Kasper E. Heintz7, Kasper E. Heintz30, A. Heinze6, M.-S. Hernandez31, Simon Hodgkin32, Isobel Hook33, Luca Izzo22, Phil A. James14, Peter G. Jonker21, Peter G. Jonker20, Wolfgang Kerzendorf13, S. Klose, Z. Kostrzewa-Rutkowska20, Z. Kostrzewa-Rutkowska21, Marek Kowalski34, Markus Kromer35, Markus Kromer36, Hanindyo Kuncarayakti29, Andy Lawrence10, T. Lowe6, Eugene A. Magnier6, Ilan Manulis8, Antonio Martin-Carrillo4, Seppo Mattila29, O. McBrien1, André Müller2, Jakob Nordin34, D. O'Neill1, F. Onori20, F. Onori21, J. Palmerio37, Andrea Pastorello19, Ferdinando Patat13, G. Pignata11, G. Pignata12, Ph. Podsiadlowski38, Maria Letizia Pumo19, Maria Letizia Pumo39, S. J. Prentice14, Arne Rau2, A. Razza24, A. Razza13, A. Rest40, A. Rest41, T. M. Reynolds29, Rupak Roy15, Rupak Roy42, Ashley J. Ruiter43, Ashley J. Ruiter44, Krzysztof A. Rybicki28, Lána Salmon4, Patricia Schady2, A. S. B. Schultz6, T. Schweyer2, Ivo R. Seitenzahl43, Ivo R. Seitenzahl44, M. Smith5, Jesper Sollerman15, B. Stalder, Christopher W. Stubbs45, Mark Sullivan5, Helene Szegedi46, Francesco Taddia15, Stefan Taubenberger2, Giacomo Terreran19, Giacomo Terreran47, B. van Soelen46, J. Vos31, Richard J. Wainscoat6, Nicholas A. Walton32, Christopher Waters6, H. Weiland6, Mark Willman6, P. Wiseman2, Darryl Wright48, Łukasz Wyrzykowski28, O. Yaron8 
02 Nov 2017-Nature
TL;DR: Observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817, indicate that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
Abstract: Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

695 citations

Journal ArticleDOI
TL;DR: G-FOBT significantly underestimates the prevalence of advanced adenomas and cancer in the screening population compared with I-FO BT, and the number-to-scope to find 1 cancer was comparable between the tests.

694 citations

Journal ArticleDOI
TL;DR: It is concluded that neurofeedback treatment for ADHD can be considered “Efficacious and Specific” (Level 5) with a large ES for inattention and impulsivity and a medium ES for hyperactivity.
Abstract: Since the first reports of neurofeedback treatment in Attention Deficit Hyperactivity Disorder (ADHD) in 1976, many studies have investigated the effects of neurofeedback on different symptoms of ADHD such as inattention, impulsivity and hyperactivity. This technique is also used by many practitioners, but the question as to the evidencebased level of this treatment is still unclear. In this study selected research on neurofeedback treatment for ADHD was collected and a meta-analysis was performed. Both prospective controlled studies and studies employing a preand post-design found large effect sizes (ES) for neurofeedback on impulsivity and inattention and a medium ES for hyperactivity. Randomized studies demonstrated a lower ES for hyperactivity suggesting that hyperactivity is probably most sensitive to nonspecific treatment factors. Due to the inclusion of some very recent and sound methodological studies in this meta-analysis, potential confounding factors such as small studies, lack of randomization in previous studies and a lack of adequate control groups have been addressed, and the clinical effects of neurofeedback in the treatment of ADHD can be regarded as clinically meaningful. Three randomized studies have employed a semi-active control group which can be regarded as a credible sham control providing an equal level of cognitive training and client-therapist interaction. Therefore, in line with the AAPB and ISNR guidelines for rating clinical efficacy, we conclude that neurofeedback treatment for ADHD can be considered “Efficacious and Specific” (Level 5) with a large ES for inattention and impulsivity and a medium ES for hyperactivity.

694 citations

Journal ArticleDOI
03 Nov 2011-Nature
TL;DR: It is shown that N2H4 is produced from the anammox substrates ammonium and nitrite and that nitric oxide is the direct precursor of N2 H4, which presents a new biochemical reaction forging an N–N bond and fills a lacuna in understanding of the biochemical synthesis of the N2 in the atmosphere.
Abstract: Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.

694 citations


Authors

Showing all 35749 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Richard H. Friend1691182140032
Yang Gao1682047146301
Ian J. Deary1661795114161
David T. Felson153861133514
Margaret A. Pericak-Vance149826118672
Fernando Rivadeneira14662886582
Shah Ebrahim14673396807
Mihai G. Netea142117086908
Mingshui Chen1411543125369
George Alverson1401653105074
Barry Blumenfeld1401909105694
Harvey B Newman139159488308
Tariq Aziz138164696586
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

94% related

University of Pennsylvania
257.6K papers, 14.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023123
2022492
20216,380
20206,080
20195,747
20185,114