scispace - formally typeset
Search or ask a question

Showing papers by "Rensselaer Polytechnic Institute published in 2016"


Journal ArticleDOI
13 Apr 2016
TL;DR: In this article, structural defects in two-dimensional transition metal dichalcogenides (TMDs) have been studied and the authors provide a comprehensive understanding of structural defects and the pathways to generating structural defects during and after synthesis.
Abstract: Two-dimensional transition metal dichalcogenides (TMDs), an emerging family of layered materials, have provided researchers a fertile ground for harvesting fundamental science and emergent applications. TMDs can contain a number of different structural defects in their crystal lattices which significantly alter their physico-chemical properties. Having structural defects can be either detrimental or beneficial, depending on the targeted application. Therefore, a comprehensive understanding of structural defects is required. Here we review different defects in semiconducting TMDs by summarizing: (i) the dimensionalities and atomic structures of defects; (ii) the pathways to generating structural defects during and after synthesis and, (iii) the effects of having defects on the physico-chemical properties and applications of TMDs. Thus far, significant progress has been made, although we are probably still witnessing the tip of the iceberg. A better understanding and control of defects is important in order to move forward the field of Defect Engineering in TMDs. Finally, we also provide our perspective on the challenges and opportunities in this emerging field.

789 citations


Journal ArticleDOI
TL;DR: In this paper, the electron mean free path and carrier relaxation time τ of the twenty most conductive elemental metals were determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent fermi velocities vf (k).
Abstract: The electron mean free path λ and carrier relaxation time τ of the twenty most conductive elemental metals are determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent Fermi velocities vf (k). The average vf deviates considerably from the free-electron prediction, even for elements with spherical Fermi surfaces including Cu (29% deviation). The calculated product of the bulk resistivity times λ indicates that, in the limit of narrow wires, Rh, Ir, and Ni are 2.1, 1.8, and 1.6 times more conductive than Cu, while various metals including Mo, Co, and Ru approximately match the Cu resistivity, suggesting that these metals are promising candidates to replace Cu for narrow interconnect lines.

647 citations


Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, F. D. Amaro5, M. Anthony1, Lior Arazi6, F. Arneodo7, C. Balan5, P. Barrow8, Laura Baudis8, Boris Bauermeister4, Boris Bauermeister9, T. Berger10, P. A. Breur2, Amos Breskin6, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno12, Ran Budnik6, L. Bütikofer13, João Cardoso5, M. Cervantes14, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, H. Contreras1, Jean-Pierre Cussonneau15, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, E. Duchovni6, S. Fattori4, A. D. Ferella9, A. Fieguth12, D. Franco8, W. Fulgione, Michelle Galloway8, M. Garbini3, C. Geis4, Luke Goetzke1, Z. Greene1, C. Grignon4, E. K. U. Gross6, W. Hampel11, C. Hasterok11, R. Itay6, Florian Kaether11, B. Kaminsky13, G. Kessler8, A. Kish8, H. Landsman6, R. F. Lang14, D. Lellouch6, L. Levinson6, M. Le Calloch15, C. Levy10, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes5, A. Lyashenko16, S. Macmullin14, A. Manfredini6, T. Marrodán Undagoitia11, Julien Masbou15, F. V. Massoli3, D. Mayani8, A. J. Melgarejo Fernandez1, Y. Meng16, M. Messina1, K. Micheneau15, B. Miguez, A. Molinario, M. Murra12, J. Naganoma17, Uwe Oberlack4, S. E. A. Orrigo5, P. Pakarha8, Bart Pelssers9, R. Persiani15, F. Piastra8, J. Pienaar14, Guillaume Plante1, N. Priel6, L. Rauch11, S. Reichard14, C. Reuter14, A. Rizzo1, S. Rosendahl12, N. Rupp11, J.M.F. dos Santos5, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, Jochen Schreiner11, Marc Schumann13, L. Scotto Lavina15, M. Selvi3, P. Shagin17, Hardy Simgen11, A. Stein16, D. Thers15, A. Tiseni2, G. C. Trinchero, C. Tunnell2, M. von Sivers13, R. Wall17, Hui Wang16, M. Weber1, Yuehuan Wei8, Ch. Weinheimer12, J. Wulf8, Yanxi Zhang1 
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Abstract: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10(−)(4) (kg·day·keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) · 10(−)(2) (t·y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t·y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10(−)(47) cm(2) at m(χ) = 50 GeV/c(2).

580 citations


Journal ArticleDOI
Jelle Aalbers1, F. Agostini2, M. Alfonsi3, F. D. Amaro4, Claude Amsler5, Elena Aprile6, Lior Arazi7, F. Arneodo8, P. Barrow9, Laura Baudis9, Laura Baudis1, M. L. Benabderrahmane8, T. Berger10, B. Beskers3, Amos Breskin7, P. A. Breur1, April S. Brown1, Ethan Brown10, S. Bruenner11, Giacomo Bruno, Ran Budnik7, Lukas Bütikofer5, J. Calvén12, João Cardoso4, D. Cichon11, D. Coderre5, Auke-Pieter Colijn1, Jan Conrad12, Jean-Pierre Cussonneau13, M. P. Decowski1, Sara Diglio13, Guido Drexlin14, Ehud Duchovni7, E. Erdal7, G. Eurin11, A. D. Ferella12, A. Fieguth15, W. Fulgione, A. Gallo Rosso, P. Di Gangi2, A. Di Giovanni8, Michelle Galloway9, M. Garbini2, C. Geis3, F. Glueck14, L. Grandi16, Z. Greene6, C. Grignon3, C. Hasterok11, Volker Hannen15, E. Hogenbirk1, J. Howlett6, D. Hilk14, C. Hils3, A. James9, B. Kaminsky5, Shingo Kazama9, Benjamin Kilminster9, A. Kish9, Lawrence M. Krauss17, H. Landsman7, R. F. Lang18, Qing Lin6, F. L. Linde1, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes4, Marrodan T. Undagoitia11, Julien Masbou13, F. V. Massoli2, D. Mayani9, M. Messina6, K. Micheneau13, A. Molinario, K. Morå12, E. Morteau13, M. Murra15, J. Naganoma19, Jayden L. Newstead17, Kaixuan Ni20, Uwe Oberlack3, P. Pakarha9, Bart Pelssers12, P. de Perio6, R. Persiani13, F. Piastra9, M.-C. Piro10, G. Plante6, L. Rauch11, S. Reichard18, A. Rizzo6, N. Rupp11, J.M.F. dos Santos4, G. Sartorelli2, M. Scheibelhut3, S. Schindler3, Marc Schumann21, Marc Schumann5, Jochen Schreiner11, L. Scotto Lavina13, M. Selvi2, P. Shagin19, Miguel Silva4, Hardy Simgen11, P. Sissol3, M. von Sivers5, D. Thers13, J. Thurn22, A. Tiseni1, Roberto Trotta23, C. Tunnell1, Kathrin Valerius14, M. Vargas15, Hongwei Wang24, Yuehuan Wei9, Ch. Weinheimer15, T. Wester22, J. Wulf9, Yanxi Zhang6, T. Zhu9, Kai Zuber22 
TL;DR: DARk matter WImp search with liquid xenoN (DARWIN) as mentioned in this paper is an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core.
Abstract: DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary g ...

553 citations


Journal ArticleDOI
TL;DR: This work discusses cell physiological responses to metabolic burdens, as well as strategies to identify and resolve the carbon and energy burden problems, including metabolic balancing, enhancing respiration, dynamic regulatory systems, chromosomal engineering, decoupling cell growth with production phases, and co- utilization of nutrient resources.

436 citations


Journal ArticleDOI
TL;DR: The final catalog of eclipsing binary systems within the 105 deg^2 Kepler field of view is presented in this paper, where the authors identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, and systems exhibiting only one eclipse event over the duration of the mission.
Abstract: The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg^2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained athttp://keplerEBs.villanova.edu.

373 citations


Journal ArticleDOI
TL;DR: The combination of tomographic imaging and deep learning, or machine learning in general, promises to empower not only image analysis but also image reconstruction as discussed by the authors, and the latter aspect is considered in this perspective article with an emphasis on medical imaging to develop a new generation of image reconstruction theories and techniques.
Abstract: The combination of tomographic imaging and deep learning, or machine learning in general, promises to empower not only image analysis but also image reconstruction. The latter aspect is considered in this perspective article with an emphasis on medical imaging to develop a new generation of image reconstruction theories and techniques. This direction might lead to intelligent utilization of domain knowledge from big data, innovative approaches for image reconstruction, and superior performance in clinical and preclinical applications. To realize the full impact of machine learning for tomographic imaging, major theoretical, technical and translational efforts are immediately needed.

370 citations


Journal ArticleDOI
09 Jun 2016-Nature
TL;DR: The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy.
Abstract: Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

359 citations


Journal ArticleDOI
27 Jan 2016-ACS Nano
TL;DR: It is reported that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air, and a potential solution is demonstrated featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C).
Abstract: Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be “air-stable”, similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featur...

350 citations


Journal ArticleDOI
TL;DR: It is shown that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.
Abstract: Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron–photon and electron–phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectrosc...

329 citations


Proceedings ArticleDOI
27 Jun 2016
TL;DR: A well-annotated, multimodal, multidimensional spontaneous emotion corpus of 140 participants, which includes derived features from 3D, 2D, and IR (infrared) sensors and baseline results for facial expression and action unit detection is presented.
Abstract: Emotion is expressed in multiple modalities, yet most research has considered at most one or two. This stems in part from the lack of large, diverse, well-annotated, multimodal databases with which to develop and test algorithms. We present a well-annotated, multimodal, multidimensional spontaneous emotion corpus of 140 participants. Emotion inductions were highly varied. Data were acquired from a variety of sensors of the face that included high-resolution 3D dynamic imaging, high-resolution 2D video, and thermal (infrared) sensing, and contact physiological sensors that included electrical conductivity of the skin, respiration, blood pressure, and heart rate. Facial expression was annotated for both the occurrence and intensity of facial action units from 2D video by experts in the Facial Action Coding System (FACS). The corpus further includes derived features from 3D, 2D, and IR (infrared) sensors and baseline results for facial expression and action unit detection. The entire corpus will be made available to the research community.

Journal ArticleDOI
25 Mar 2016-ACS Nano
TL;DR: It is shown that irradiation causes partial removal of sulfur and the dependence of the Raman peak shifts with S vacancy density is quantitatively correlated with vacancy concentration, as rationalized by first-principles density functional theory calculations.
Abstract: We report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy two-terminal conductivity of monolayer MoS2 under electron irradiation. We observe a red-shift in the E' Raman peak and a less pronounced blue-shift in the A'1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy and selected-area electron diffraction, we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %). This allows us to quantitatively correlate the frequency shifts with vacancy concentration, as rationalized by first-principles density functional theory calculations. In situ device current measurements show an exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS2-based transport channels.


Journal ArticleDOI
TL;DR: In this article, a review of the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene is presented, with a focus on the Raman spectrum.
Abstract: This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrodinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.

Journal ArticleDOI
TL;DR: In this paper, the authors argue that a prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils to many aspects of their daily life, and that, as long as this prerequisite is satisfied, the combination of deliberative decision-making methods and of a sound scientific approach to quantify soil functions/services is a very promising avenue to manage effectively and ethically the priceless heritage that soils constitute.
Abstract: Over the last few years, considerable attention has been devoted in the scientific literature and in the media to the concept of "ecosystem" services of soils. The monetary valuation of these services, demanded by many governments and international agencies, is often depicted as a necessary condition for the preservation of the natural capital that soils represent. This focus on soil services is framed in the context of a general interest in ecosystem services that allegedly started in 1997, and took off in earnest after 2005. The careful analysis of the literature proposed in this article shows that, in fact, interest in the multifunctionality of soils emerged already in the mid-60s, at a time when hundreds of researchers worldwide were trying, and largely failing, to figure out how to put price tags meaningfully on "nature's services." Soil scientists, since, have tried to better understand various functions/services of soils, as well as their possible relation with key soil characteristics, like biodiversity. They have also tried to make progress on the challenging quantification of soil functions/services. However, researchers have shown very little interest in monetary valuation, undoubtedly in part because it is not clear what economic and financial markets might do with prices of soil functions/services, even if we could somehow come up with such numbers, and because there is no assurance at all, based on neoclassical economic theory, that markets would manage soil resources optimally. Instead of monetary valuation, focus in the literature has been put on decision-making methods, like Multi-Criteria Decision Analysis (MCDA) and Bayesian Belief Networks (BBN), which do not require the systematic monetization of soil functions/services and easily accommodate deliberative approaches involving a variety of stakeholders. A prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils to many aspects of their daily life. We argue that, as long as this prerequisite is satisfied, the combination of deliberative decision-making methods and of a sound scientific approach to the quantification of soil functions/services is a very promising avenue to manage effectively and ethically the priceless heritage that soils constitute.


Journal ArticleDOI
TL;DR: In this paper, a systematic study was conducted for the analysis of polymer backbone chemical stability in alkaline media, including poly(arylene ethers, poly(biphenyl alkylene)s, and polystyrene block copolymers.
Abstract: Anion exchange membranes are an important component in alkaline electrochemical energy conversion and storage devices, and their alkaline stability plays a crucial role for the long-term use of these devices. Herein, a systematic study was conducted for the analysis of polymer backbone chemical stability in alkaline media. Nine representative polymer structures including poly(arylene ether)s, poly(biphenyl alkylene)s, and polystyrene block copolymers were investigated for their alkaline stability. Polymers with aryl ether bonds in their repeating unit showed poor chemical stability when treated with KOH and NaOCH3 solutions, whereas polymers without aryl ether bonds [e.g., poly(biphenyl alkylene)s and polystyrene block copolymers] remained stable. Additional NMR studies and density functional theory (DFT) calculations of small molecule model compounds that mimic the chemical structures of poly(arylene ether)s confirmed that electron-withdrawing groups near to the aryl ether bonds in the repeating unit acc...

Journal ArticleDOI
TL;DR: In this article, the authors exfoliated CrSiTe3, a bulk ferromagnetic semiconductor, to mono-and few-layer 2D crystals onto a Si/SiO2 substrate.
Abstract: Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained exploratory. In this work we exfoliated CrSiTe3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO2 substrate. Raman spectra indicate good stability and high quality of the exfoliated flakes, consistent with the computed phonon spectra of 2D CrSiTe3, giving strong evidence for the existence of 2D CrSiTe3 crystals. When the thickness of the CrSiTe3 crystals is reduced to a few layers, we observed a clear change in resistivity at 80–120 K, consistent with theoretical calculations of the Curie temperature (Tc) of ∼80 K for the magnetic ordering of 2D CrSiTe3 crystals. The ferromagnetic mono- and few-layer 2D CrSiTe3 indicated here should enable numerous applications in nano-spintronics.

Journal ArticleDOI
TL;DR: RandNLA is an interdisciplinary research area that exploits randomization as a computational resource to develop improved algorithms for large-scale linear algebra problems and promises a sound algorithmic and statistical foundation for modern large- scale data analysis.
Abstract: M ATRICES ARE UBIQUITOUS in computer science, statistics, and applied mathematics. An m × n matrix can encode information about m objects (each described by n features), or the behavior of a discretized differential operator on a finite element mesh; an n × n positive-definite matrix can encode the correlations between all pairs of n objects, or the edge-connectivity between all pairs of nodes in a social network; and so on. Motivated largely by technological developments that generate extremely large scientific and Internet datasets, recent years have witnessed exciting developments in the theory and practice of matrix algorithms. Particularly remarkable is the use of randomization—typically assumed to be a property of the input data due to, for example, noise in the data generation mechanisms—as an algorithmic or computational resource for the develop ment of improved algorithms for fundamental matrix problems such as matrix multiplication, least-squares (LS) approximation, lowrank matrix approxi mation, and Laplacian-based linear equ ation solvers. Randomized Numerical Linear Algebra (RandNLA) is an interdisciplinary research area that exploits randomization as a computational resource to develop improved algorithms for large-scale linear algebra problems. From a foundational perspective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathematics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear algebra). From an applied perspective, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implementations have already outperformed highly optimized software libraries for ubiquitous problems such as leastsquares, with good scalability in parallel and distributed envi ronments.52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis. RandNLA: Randomized Numerical Linear Algebra

Journal ArticleDOI
TL;DR: An overview of the new features of the finite element library deal in version 8.4.II is provided.
Abstract: Abstract This paper provides an overview of the new features of the finite element library deal.II version 8.4.

Journal ArticleDOI
TL;DR: Results demonstrate that pre-trained neural networks represent microstructure image data well, and when used for feature extraction yield the highest classification accuracies for the majority of classifier and feature selection methods tested, suggesting that deep learning algorithms can successfully be applied to micrograph recognition tasks.

Posted Content
TL;DR: To realize the full impact of machine learning for tomographic imaging, major theoretical, technical and translational efforts are immediately needed.
Abstract: The combination of tomographic imaging and deep learning, or machine learning in general, promises to empower not only image analysis but also image reconstruction. The latter aspect is considered in this perspective article with an emphasis on medical imaging to develop a new generation of image reconstruction theories and techniques. This direction might lead to intelligent utilization of domain knowledge from big data, innovative approaches for image reconstruction, and superior performance in clinical and preclinical applications. To realize the full impact of machine learning on medical imaging, major challenges must be addressed.

Journal ArticleDOI
TL;DR: Twitter Wikipedia Mon, 21 May 2018 01:49:00 GMT Twitter (/ ? t w ? t ?r /) is an online news and social networking service on which users post and interact with messages known as "tweets". Tweets were originally restricted to 140 characters, but on November 7, 2017, this limit was doubled.
Abstract: Twitter Wikipedia Mon, 21 May 2018 01:49:00 GMT Twitter (/ ? t w ? t ?r /) is an online news and social networking service on which users post and interact with messages known as \"tweets\". Tweets were originally restricted to 140 characters, but on November 7, 2017, this limit was doubled for all languages except Japanese, Korean, and Chinese. Edward Snowden Wikipedia Mon, 21 May 2018 00:38:00 GMT The exact size of Snowden's disclosure is unknown, but Australian officials have estimated 15,000 or more Australian intelligence files and British officials estimate at least 58,000 British intelligence files. Friday Squid Blogging: Bioluminescent Squid Schneier on ... Fri, 01 Sep 2017 21:40:00 GMT Friday Squid Blogging: Bioluminescent Squid. There's a beautiful picture of a tiny squid in this New York Times article on bioluminescence -and a dramatic one of a vampire squid.


Journal ArticleDOI
F. P. An1, A. B. Balantekin2, H. R. Band3, M. Bishai4  +218 moreInstitutions (38)
TL;DR: In this article, a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment was reported.
Abstract: This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

Journal ArticleDOI
TL;DR: All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product.

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: The results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour and could be applied to study other neural processes or used to regulate other, even dispersed, cell types.
Abstract: Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.

Journal ArticleDOI
TL;DR: It is shown that thermoregulation depends not only on the mean and variance of operative environmental temperatures but also on the spatial arrangement of these temperatures, which has further implications for ecological models that rely on estimates of activity to predict the responses to climatic change.
Abstract: Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales.

Journal ArticleDOI
TL;DR: This study presents an Escherichia coli co-culture for the efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over previously published monoculture production.

Journal ArticleDOI
TL;DR: The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts.
Abstract: Methods to overcome metal artifacts in computed tomography (CT) images have been researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on its size and density, different physical effects will negatively affect the measurements, most notably beam hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover information about underlying structures, many methods and correction algorithms have been proposed and tested. We comprehensively review and categorize these methods into six different classes of MAR: metal implant optimization, improvements to the data acquisition process, data correction based on physics models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction), and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the future of MAR seems to be headed toward a combined approach of improving the acquisition process with dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to compare MAR methods.