scispace - formally typeset
Search or ask a question
Institution

Rensselaer Polytechnic Institute

EducationTroy, New York, United States
About: Rensselaer Polytechnic Institute is a education organization based out in Troy, New York, United States. It is known for research contribution in the topics: Terahertz radiation & Population. The organization has 19024 authors who have published 39922 publications receiving 1414699 citations. The organization is also known as: RPI & Rensselaer Institute.


Papers
More filters
Journal ArticleDOI
27 Jan 2016-ACS Nano
TL;DR: It is reported that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air, and a potential solution is demonstrated featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C).
Abstract: Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be “air-stable”, similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featur...

350 citations

Journal ArticleDOI
01 Feb 2020
TL;DR: This survey outlines the evolution of deep learning-based medical image registration in the context of both research challenges and relevant innovations in the past few years and highlights future research directions to show how this field may be possibly moved forward to the next level.
Abstract: The establishment of image correspondence through robust image registration is critical to many clinical tasks such as image fusion, organ atlas creation, and tumor growth monitoring and is a very challenging problem. Since the beginning of the recent deep learning renaissance, the medical imaging research community has developed deep learning-based approaches and achieved the state-of-the-art in many applications, including image registration. The rapid adoption of deep learning for image registration applications over the past few years necessitates a comprehensive summary and outlook, which is the main scope of this survey. This requires placing a focus on the different research areas as well as highlighting challenges that practitioners face. This survey, therefore, outlines the evolution of deep learning-based medical image registration in the context of both research challenges and relevant innovations in the past few years. Further, this survey highlights future research directions to show how this field may be possibly moved forward to the next level.

349 citations

Journal ArticleDOI
TL;DR: An overview of ripple-based control techniques can be found in this paper, where the authors discuss their merits and limitations, and introduce techniques for reducing the noise sensitivity and the sensitivity to capacitor parameters, improving the frequency stability and the dc regulation.
Abstract: Switching regulators with ripple-based control (ie, ?ripple regulators?) are conceptually simple, have fast transient responses to both line and load perturbations, and some versions operate with a switching frequency that is proportional to the load current under the discontinuous conduction mode These characteristics make the ripple regulators well-suited, especially for power management applications in computers and portable electronic devices Ripple regulators also have some drawbacks, including (in some versions) a poorly defined switching frequency, noise-induced jitter, inadequate dc regulation, and a tendency for fast-scale instability This paper presents an overview of the various ripple-based control techniques, discusses their merits and limitations, and introduces techniques for reducing the noise sensitivity and the sensitivity to capacitor parameters, improving the frequency stability and the dc regulation, and avoiding fast-scale instability

349 citations

Journal ArticleDOI
24 Jan 2014-Science
TL;DR: Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the Mudstone; however, the carbon source for the chlorinatedHydrocarbons is not definitively of martian origin.
Abstract: H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

349 citations

Journal ArticleDOI
TL;DR: This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale “elbow” junctions and nanotubes covalent interconnections.
Abstract: The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale "elbowg" junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the "elbowg" junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this materialĝ€™s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

348 citations


Authors

Showing all 19133 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Murray F. Brennan16192597087
Ashok Kumar1515654164086
Joseph R. Ecker14838194860
Bruce E. Logan14059177351
Shih-Fu Chang13091772346
Michael G. Rossmann12159453409
Richard P. Van Duyne11640979671
Michael Lynch11242263461
Angel Rubio11093052731
Alan Campbell10968753463
Boris I. Yakobson10744345174
O. C. Zienkiewicz10745571204
John R. Reynolds10560750027
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Purdue University
163.5K papers, 5.7M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022177
20211,118
20201,356
20191,328
20181,245