scispace - formally typeset
Search or ask a question
Institution

Rensselaer Polytechnic Institute

EducationTroy, New York, United States
About: Rensselaer Polytechnic Institute is a education organization based out in Troy, New York, United States. It is known for research contribution in the topics: Terahertz radiation & Finite element method. The organization has 19024 authors who have published 39922 publications receiving 1414699 citations. The organization is also known as: RPI & Rensselaer Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper examines a powerful electrical technique by which cell motion is quantitatively measured at the nanometer level and it is clear that under these circumstances the average motions of the cell layer of 1 nm can be inferred from the measurements.
Abstract: Motility is a fundamental property of mammalian cells that normally is observed in tissue culture by time lapse microscopy where resolution is limited by the wavelength of light. This paper examines a powerful electrical technique by which cell motion is quantitatively measured at the nanometer level. In this method, the cells are cultured on small evaporated gold electrodes carrying weak ac currents. A large change in the measured electrical impedance of the electrodes is observed when cells attach and spread on these electrodes. When the impedance is tracked as a function of time, fluctuations are observed that are a direct measure of cell motion. Surprisingly, these fluctuations continue even when the cell layer becomes confluent. By comparing the measured impedance with a theoretical model, it is clear that under these circumstances the average motions of the cell layer of 1 nm can be inferred from the measurements. We refer to this aspect of cell motility as micromotion.

836 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of continuous-time random walk theory for diffusion of single particles on lattices with frozen-in disorder, including models with regular transition rates and irregular lattices.

835 citations

Journal ArticleDOI
TL;DR: The CypD-mediated mitochondrial permeability transition pore is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of Alzheimer's disease.
Abstract: Mitochondrial dysfunction has been described in Alzheimer's disease, but how it is induced has remained unclear. Shi Du Yan and her colleagues find that a neurotoxic amyloid protein associated with the disease binds a mitochondrial protein called cyclophilin D and causes neuron death. The authors show that Alzheimer's disease model mice that lack cyclophilin D show improvements in learning and memory. Cyclophilin D (CypD, encoded by Ppif) is an integral part of the mitochondrial permeability transition pore, whose opening leads to cell death. Here we show that interaction of CypD with mitochondrial amyloid-β protein (Aβ) potentiates mitochondrial, neuronal and synaptic stress. The CypD-deficient cortical mitochondria are resistant to Aβ- and Ca2+-induced mitochondrial swelling and permeability transition. Additionally, they have an increased calcium buffering capacity and generate fewer mitochondrial reactive oxygen species. Furthermore, the absence of CypD protects neurons from Aβ- and oxidative stress–induced cell death. Notably, CypD deficiency substantially improves learning and memory and synaptic function in an Alzheimer's disease mouse model and alleviates Aβ-mediated reduction of long-term potentiation. Thus, the CypD-mediated mitochondrial permeability transition pore is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of Alzheimer's disease. Blockade of CypD may be a therapeutic strategy in Alzheimer's disease.

833 citations

Journal ArticleDOI
TL;DR: In this paper, a qualitative analysis of the role of organizational practices in the successful knowledge transfer at research universities has been conducted based on 55 structured interviews of 98 UITT stakeholders associated with five US research universities.

828 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the extent of thermal conductivity enhancement sometimes greatly exceeds the predictions of well-established theories, and new theoretical descriptions may be needed to account properly for the unique features of nanofluids, such as high particle mobility and large surface to volume ratio.

824 citations


Authors

Showing all 19133 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Murray F. Brennan16192597087
Ashok Kumar1515654164086
Joseph R. Ecker14838194860
Bruce E. Logan14059177351
Shih-Fu Chang13091772346
Michael G. Rossmann12159453409
Richard P. Van Duyne11640979671
Michael Lynch11242263461
Angel Rubio11093052731
Alan Campbell10968753463
Boris I. Yakobson10744345174
O. C. Zienkiewicz10745571204
John R. Reynolds10560750027
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Purdue University
163.5K papers, 5.7M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022177
20211,118
20201,356
20191,328
20181,245