scispace - formally typeset
Search or ask a question
Institution

Rensselaer Polytechnic Institute

EducationTroy, New York, United States
About: Rensselaer Polytechnic Institute is a education organization based out in Troy, New York, United States. It is known for research contribution in the topics: Terahertz radiation & Population. The organization has 19024 authors who have published 39922 publications receiving 1414699 citations. The organization is also known as: RPI & Rensselaer Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic survey of the common processing steps and core decision rules in modern change detection algorithms, including significance and hypothesis testing, predictive models, the shading model, and background modeling.
Abstract: Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing. This paper presents a systematic survey of the common processing steps and core decision rules in modern change detection algorithms, including significance and hypothesis testing, predictive models, the shading model, and background modeling. We also discuss important preprocessing methods, approaches to enforcing the consistency of the change mask, and principles for evaluating and comparing the performance of change detection algorithms. It is hoped that our classification of algorithms into a relatively small number of categories will provide useful guidance to the algorithm designer.

1,693 citations

Journal ArticleDOI
TL;DR: The chemotactic response of unicellular microscopic organisms is viewed as analogous to Brownian motion, and a macroscopic flux is derived which is proportional to the chemical gradient.

1,660 citations

Journal ArticleDOI
TL;DR: The recent state of the art CAD technology for digitized histopathology is reviewed and the development and application of novel image analysis technology for a few specific histopathological related problems being pursued in the United States and Europe are described.
Abstract: Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.

1,644 citations

Journal ArticleDOI
TL;DR: Efficient algorithms for the discovery of frequent itemsets which forms the compute intensive phase of the association mining task are presented and the effect of using different database layout schemes combined with the proposed decomposition and traverse techniques are presented.
Abstract: Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent itemsets, and then forming conditional implication rules among them. We present efficient algorithms for the discovery of frequent itemsets which forms the compute intensive phase of the task. The algorithms utilize the structural properties of frequent itemsets to facilitate fast discovery. The items are organized into a subset lattice search space, which is decomposed into small independent chunks or sublattices, which can be solved in memory. Efficient lattice traversal techniques are presented which quickly identify all the long frequent itemsets and their subsets if required. We also present the effect of using different database layout schemes combined with the proposed decomposition and traversal techniques. We experimentally compare the new algorithms against the previous approaches, obtaining improvements of more than an order of magnitude for our test databases.

1,637 citations

Journal ArticleDOI
Jennifer K. Adelman-McCarthy1, Marcel A. Agüeros2, S. Allam3, S. Allam1  +170 moreInstitutions (65)
TL;DR: The Sixth Data Release of the Sloan Digital Sky Survey (SDS) as discussed by the authors contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes.
Abstract: This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky ( for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and red-shifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

1,602 citations


Authors

Showing all 19133 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Murray F. Brennan16192597087
Ashok Kumar1515654164086
Joseph R. Ecker14838194860
Bruce E. Logan14059177351
Shih-Fu Chang13091772346
Michael G. Rossmann12159453409
Richard P. Van Duyne11640979671
Michael Lynch11242263461
Angel Rubio11093052731
Alan Campbell10968753463
Boris I. Yakobson10744345174
O. C. Zienkiewicz10745571204
John R. Reynolds10560750027
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Purdue University
163.5K papers, 5.7M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022177
20211,118
20201,356
20191,328
20181,245